The blackgrass genome reveals patterns of non-parallel evolution of polygenic herbicide resistance

被引:20
作者
Cai, Lichun [1 ]
Comont, David [2 ]
MacGregor, Dana [2 ]
Lowe, Claudia [2 ]
Beffa, Roland [3 ,4 ]
Neve, Paul [2 ,5 ]
Saski, Christopher [1 ]
机构
[1] Clemson Univ, Dept Plant & Environm Sci, Clemson, SC 29634 USA
[2] Rothamsted Res, Protecting Crops & Environm, Harpenden AL5 2JQ, Herts, England
[3] Ind Pk Hochst, Bayer Crop Sci, D-65926 Frankfurt, Germany
[4] Konigsteiner Weg 4, D-65835 Liederbach, Germany
[5] Univ Copenhagen, Dept Plant & Environm Sci, Hojbakkegard 13, DK-2630 Tastrup, Denmark
基金
美国国家卫生研究院;
关键词
blackgrass (Alopecurus myosuroides); herbicide resistance; parallel evolution; polygenic trait; quantitative genetics; rapid plant adaptation; weed evolution; weed genomics; DIFFERENTIAL EXPRESSION ANALYSIS; ALOPECURUS-MYOSUROIDES; PHYLOGENETIC ANALYSIS; DIVERGENCE; POPULATION; ADAPTATION; WEEDS; CONSEQUENCES; PREDICTION; ALIGNMENT;
D O I
10.1111/nph.18655
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
center dot Globally, weedy plants are a major constraint to sustainable crop production. Much of the success of weeds rests with their ability to rapidly adapt in the face of human-mediated man-agement of agroecosystems. Alopecurus myosuroides (blackgrass) is a widespread and impactful weed affecting agriculture in Europe.center dot Here we report a chromosome-scale genome assembly of blackgrass and use this reference genome to explore the genomic/genetic basis of non-target site herbicide resistance (NTSR). Based on our analysis of F2 seed families derived from two distinct blackgrass populations with the same NTSR phenotype, we demonstrate that the trait is polygenic and evolves from standing genetic variation.center dot We present evidence that selection for NTSR has signatures of both parallel and non-parallel evolution. There are parallel and non-parallel changes at the transcriptional level of several stress-and defence-responsive gene families. At the genomic level, however, the genetic loci underpinning NTSR are different (non-parallel) between seed families.center dot We speculate that variation in the number, regulation and function of stress-and defence-related gene families enable weedy species to rapidly evolve NTSR via exaptation of genes within large multi-functional gene families. These results provide novel insights into the potential for, and nature of plant adaptation in rapidly changing environments.
引用
收藏
页码:1891 / 1907
页数:17
相关论文
共 100 条
  • [21] Mechanisms of evolved herbicide resistance
    Gaines, Todd A.
    Duke, Stephen O.
    Morran, Sarah
    Rigon, Carlos A. G.
    Tranel, Patrick J.
    Kuepper, Anita
    Dayan, Franck E.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2020, 295 (30) : 10307 - 10330
  • [22] Coexpression Clusters and Allele-Specific Expression in Metabolism-Based Herbicide Resistance
    Giacomini, Darci A.
    Patterson, Eric L.
    Kuepper, Anita
    Beffa, Roland
    Gaines, Todd A.
    Tranel, Patrick J.
    [J]. GENOME BIOLOGY AND EVOLUTION, 2020, 12 (12): : 2267 - 2278
  • [23] Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance?
    Gould, Fred
    Brown, Zachary S.
    Kuzma, Jennifer
    [J]. SCIENCE, 2018, 360 (6390) : 728 - 732
  • [24] Gupta S, 2021, bioRxiv, DOI [10.1101/2021.04.04.438381, 10.1101/2021.04.04.438381, DOI 10.1101/2021.04.04.438381]
  • [25] Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments
    Haas, Brian J.
    Salzberg, Steven L.
    Zhu, Wei
    Pertea, Mihaela
    Allen, Jonathan E.
    Orvis, Joshua
    White, Owen
    Buell, C. Robin
    Wortman, Jennifer R.
    [J]. GENOME BIOLOGY, 2008, 9 (01)
  • [26] De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis
    Haas, Brian J.
    Papanicolaou, Alexie
    Yassour, Moran
    Grabherr, Manfred
    Blood, Philip D.
    Bowden, Joshua
    Couger, Matthew Brian
    Eccles, David
    Li, Bo
    Lieber, Matthias
    MacManes, Matthew D.
    Ott, Michael
    Orvis, Joshua
    Pochet, Nathalie
    Strozzi, Francesco
    Weeks, Nathan
    Westerman, Rick
    William, Thomas
    Dewey, Colin N.
    Henschel, Robert
    Leduc, Richard D.
    Friedman, Nir
    Regev, Aviv
    [J]. NATURE PROTOCOLS, 2013, 8 (08) : 1494 - 1512
  • [27] Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides across at least five modes of action
    Han, Heping
    Yu, Qin
    Beffa, Roland
    Gonzalez, Susana
    Maiwald, Frank
    Wang, Jian
    Powles, Stephen B.
    [J]. PLANT JOURNAL, 2021, 105 (01) : 79 - 92
  • [28] The evolutionary origins of pesticide resistance
    Hawkins, Nichola J.
    Bass, Chris
    Dixon, Andrea
    Neve, Paul
    [J]. BIOLOGICAL REVIEWS, 2019, 94 (01) : 135 - 155
  • [29] Global perspective of herbicide-resistant weeds
    Heap, Ian
    [J]. PEST MANAGEMENT SCIENCE, 2014, 70 (09) : 1306 - 1315
  • [30] Evolutionary principles and their practical application
    Hendry, Andrew P.
    Kinnison, Michael T.
    Heino, Mikko
    Day, Troy
    Smith, Thomas B.
    Fitt, Gary
    Bergstrom, Carl T.
    Oakeshott, John
    Jorgensen, Peter S.
    Zalucki, Myron P.
    Gilchrist, George
    Southerton, Simon
    Sih, Andrew
    Strauss, Sharon
    Denison, Robert F.
    Carroll, Scott P.
    [J]. EVOLUTIONARY APPLICATIONS, 2011, 4 (02): : 159 - 183