Central nilpotency of skew braces

被引:12
作者
Bonatto, Marco [1 ]
Jedlicka, Premysl [2 ]
机构
[1] Univ Ferrara, Dept Math & Comp Sci, Via Macchiavelli 30, I-44121 Ferrara, Italy
[2] Czech Univ Life Sci, Fac Engn, Dept Math, Kamycka 129, Prague 16521 6, Czech Republic
关键词
Skew braces; center; nilpotency; SET-THEORETICAL SOLUTIONS; BAXTER;
D O I
10.1142/S0219498823502559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Skew braces are algebraic structures related to the solutions of the set-theoretic quantum Yang-Baxter equation. We develop the central nilpotency theory for such algebraic structures in the sense of Freese-McKenzie [12] and we compare the universal algebraic notion of central nilpotency with the notion of right and left nilpotency developed in [7].
引用
收藏
页数:16
相关论文
共 22 条
  • [1] Every (k+1)-affine complete nilpotent group of class k is affine complete
    Aichincer, E
    Ecker, J
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2006, 16 (02) : 259 - 274
  • [2] Some applications of higher commutators in Mal'cev algebras
    Aichinger, Erhard
    Mudrinski, Nebojsa
    [J]. ALGEBRA UNIVERSALIS, 2010, 63 (04) : 367 - 403
  • [3] Asymmetric product of left braces and simplicity; new solutions of the Yang-Baxter equation
    Bachiller, D.
    Cedo, F.
    Jespers, E.
    Okninski, J.
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (08)
  • [4] Solutions of the Yang-Baxter equation associated to skew left braces, with applications to racks
    Bachiller, David
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (08)
  • [5] Rota-Baxter groups, skew left braces, and the Yang-Baxter equation
    Bardakov, Valeriy G.
    Gubarev, Vsevolod
    [J]. JOURNAL OF ALGEBRA, 2022, 596 : 328 - 351
  • [6] Bonatto M., 2019, QUESTIONS ANSWERS GE, V37, P89
  • [7] Catino F., 2020, ARXIV
  • [8] Skew left braces with non-trivial annihilator
    Catino, Francesco
    Colazzo, Ilaria
    Stefanelli, Paola
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (02)
  • [9] Skew left braces of nilpotent type
    Cedo, Ferran
    Smoktunowicz, Agata
    Vendramin, Leandro
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 118 (06) : 1367 - 1392
  • [10] DRINFELD VG, 1992, LECT NOTES MATH, V1510, P1