Central nilpotency of skew braces

被引:12
|
作者
Bonatto, Marco [1 ]
Jedlicka, Premysl [2 ]
机构
[1] Univ Ferrara, Dept Math & Comp Sci, Via Macchiavelli 30, I-44121 Ferrara, Italy
[2] Czech Univ Life Sci, Fac Engn, Dept Math, Kamycka 129, Prague 16521 6, Czech Republic
关键词
Skew braces; center; nilpotency; SET-THEORETICAL SOLUTIONS; BAXTER;
D O I
10.1142/S0219498823502559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Skew braces are algebraic structures related to the solutions of the set-theoretic quantum Yang-Baxter equation. We develop the central nilpotency theory for such algebraic structures in the sense of Freese-McKenzie [12] and we compare the universal algebraic notion of central nilpotency with the notion of right and left nilpotency developed in [7].
引用
收藏
页数:16
相关论文
共 50 条
  • [1] CENTRAL NILPOTENCY OF LEFT SKEW BRACES AND SOLUTIONS OF THE YANG-BAXTER EQUATION
    Ballester-bolinches, Adolfo
    Esteban-romero, Ramon
    Ferrara, Maria
    Perez-calabuig, Vicent
    Trombetti, Marco
    PACIFIC JOURNAL OF MATHEMATICS, 2025, 335 (01)
  • [2] Nilpotency of skew braces and multipermutation solutions of the Yang-Baxter equation
    Jespers, E.
    Van Antwerpen, A.
    Vendramin, L.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (09)
  • [3] Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces
    Acri, E.
    Lutowski, R.
    Vendramin, L.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (01) : 91 - 115
  • [4] Nilpotency in left semi-braces
    Catino, Francesco
    Cedo, Ferran
    Stefanelli, Paola
    JOURNAL OF ALGEBRA, 2022, 604 : 128 - 161
  • [5] Isoclinism of skew braces
    Letourmy, T.
    Vendramin, L.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (06) : 2891 - 2906
  • [6] Factorizations of skew braces
    Jespers, E.
    Kubat, L.
    Van Antwerpen, A.
    Vendramin, L.
    MATHEMATISCHE ANNALEN, 2019, 375 (3-4) : 1649 - 1663
  • [7] On skew braces and their ideals
    Konovalov, Alexander
    Smoktunowicz, Agata
    Vendramin, Leandro
    EXPERIMENTAL MATHEMATICS, 2021, 30 (01) : 95 - 104
  • [8] On λ-homomorphic skew braces
    Bardakov, Valeriy G.
    Neshchadim, Mikhail, V
    Yadav, Manoj K.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (06)
  • [9] Skew-braces and q-braces
    Rump, Wolfgang
    FORUM MATHEMATICUM, 2023, : 1631 - 1653
  • [10] Factorizations of skew braces
    E. Jespers
    Ł. Kubat
    A. Van Antwerpen
    L. Vendramin
    Mathematische Annalen, 2019, 375 : 1649 - 1663