Molecular design of a metal-organic framework material rich in fluorine as an interface layer for high-performance solid-state Li metal batteries

被引:82
作者
Wang, Tianyuan [1 ]
Zhang, Xinling [1 ]
Yuan, Ning [1 ]
Sun, Chunwen [1 ]
机构
[1] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state batteries; Solid-state electrolyte; artificial SEI layer; Fluorination; MOFs; LITHIUM-METAL; POLYMER ELECTROLYTES; ENERGY; CHEMISTRY; MECHANISM;
D O I
10.1016/j.cej.2022.138819
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Unstable electrolyte/electrode interface and uncontrolled Li dendrite growth hinder the large-scale commercial application of Li metal batteries. In this work, an artificial interfacial layer is developed to suppress the dendrite formation and the parasitic reactions between Li metal anode and electrolyte by the rational molecular design of a metal-organic framework material rich in fluorine (UiO-66(F)). The intrinsic nanochannels in UiO-66(F) promote the decomposition of lithium salts and limit the movement of anions. Moreover, the in situ formed LiF inhibits the Li dendrite growth. The composite electrolyte with the UiO-66(F) interfacial layer exhibits a wide electrochemical window (5.13 V vs Li/Li+), high ionic conductivity (4.9 x 10(-4) S cm(-1)), and ionic transference number (0.51) at room temperature. XPS results demonstrate that the in situ formed solid-electrolyte interface (SEI) is attributed to the active F groups in UiO-66(F). The symmetric cell with the optimized interfacial layer achieves excellent cycling performance over 2200 h at 0.2 mA cm(-2). In addition, the assembled full cell LiFePO4||Li also exhibits a capacity retention rate of 90.71 % after 960 cycles at 0.5 C. Even at higher rate of 2 C, it still exhibits a high discharge capacity of 139.6 mAh g(-1). This molecular design strategy for interfacial layer show great promise for practical applications of Li metal batteries.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Electrophoretic Crystallization of Ultrathin High-performance Metal-organic Framework Membranes [J].
He, Guangwei ;
Babu, Deepu J. ;
Agrawal, Kumar Varoon .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (138)
[22]   Solid-state isolation of reactive complexes in a metal-organic framework matrix [J].
Peralta, Ricardo ;
Huxley, Michael ;
Albalad, Jorge ;
Doonan, Christian ;
Sumby, Christopher .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 :C64-C64
[23]   Glassy Metal-Organic-Framework-Based Quasi-Solid-State Electrolyte for High-Performance Lithium-Metal Batteries [J].
Jiang, Guangshen ;
Qu, Changzhen ;
Xu, Fei ;
Zhang, En ;
Lu, Qiongqiong ;
Cai, Xiaoru ;
Hausdorf, Steffen ;
Wang, Hongqiang ;
Kaskel, Stefan .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (43)
[24]   Bi-nanofillers integrated into PEO-based electrolyte for high-performance solid-state Li metal batteries [J].
Yin, Junying ;
Xu, Xin ;
Jiang, Sen ;
Lei, Yue ;
Gao, Yunfang .
JOURNAL OF POWER SOURCES, 2022, 550
[25]   Construction of high-performance solid-state electrolytes for lithium metal batteries by UV-curing technology [J].
Chen, Zengxu ;
Zhang, Yongquan ;
Zhu, Baoshan ;
Wang, Jingshun ;
Hu, Jingrun ;
Zou, Jianxin ;
Jin, Zhao ;
Li, Xinhe ;
Zhang, Yue ;
Zhang, Changhai .
POLYMER TESTING, 2024, 132
[26]   Tuning the interface by a soldering method for high performance garnet-type solid-state Li metal battery [J].
Zheng, Shu ;
Fu, Zheng ;
Dai, Dongju ;
Zhao, Weimin .
CERAMICS INTERNATIONAL, 2019, 45 (09) :11955-11962
[27]   Transition metal phosphide composite with metal-organic framework and carbon nanotubes for high-performance lithium-sulfur batteries [J].
Chen, Jingzhou ;
Feng, Wangjun ;
Zhao, Wei ;
Shi, Zhaojiao .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 890
[28]   High-Performance All-Solid-State Lithium Metal Batteries Enabled by Ionic Covalent Organic Framework Composites [J].
Huang, Jun ;
Cheng, Lei ;
Zhang, Zhenyang ;
Li, Chen ;
Bang, Ki-Taek ;
Liem, Albert ;
Luo, Hang ;
Hu, Chuan ;
Lee, Young Moo ;
Lu, Yingying ;
Wang, Yanming ;
Kim, Yoonseob .
ADVANCED ENERGY MATERIALS, 2024, 14 (27)
[29]   Na-K Alloy Anode for High-Performance Solid-State Sodium Metal Batteries [J].
Cheng, Yifeng ;
Li, Menghao ;
Yang, Xuming ;
Lu, Xinzhen ;
Wu, Duojie ;
Zhang, Qing ;
Zhu, Yuanmin ;
Gu, Meng .
NANO LETTERS, 2022, 22 (23) :9614-9620
[30]   Solvation Regulation Reinforces Anion-Derived Inorganic-Rich Interphase for High-Performance Quasi-Solid-State Li Metal Batteries [J].
Xu, Pan ;
Gao, Yu-Chen ;
Huang, Yu-Xin ;
Shuang, Zong-Yao ;
Kong, Wei-Jing ;
Huang, Xue-Yan ;
Huang, Wen-Ze ;
Yao, Nan ;
Chen, Xiang ;
Yuan, Hong ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2024, 36 (44)