Large deviation principles for a 2D liquid crystal model with jump noise

被引:0
作者
Medjo, T. Tachim [1 ]
机构
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
关键词
Liquid crystal; Navier-Stokes; strong solutions; Levy noise; large deviations; STOKES EQUATIONS DRIVEN; WEAK SOLUTION; EXISTENCE; UNIQUENESS;
D O I
10.1080/00036811.2022.2107909
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a stochastic 2D liquid crystal model with a multiplicative noise of Levy type, which models the dynamic of nematic liquid crystals under the influence of stochastic external forces of jump type. We derive a large deviation principle for the model. The proof is based on the weak convergence method introduced in [Budhiraja A, Dupuis P, Maroulas V. Variational representations for continuous time processes. Ann Inst Henri Poincar Probab Stat. 2011;47(3):725-747].
引用
收藏
页码:4177 / 4208
页数:32
相关论文
共 41 条
  • [1] Brzezniak Z., 2017, PREPRINT
  • [2] Some results on the penalised nematic liquid crystals driven by multiplicative noise: weak solution and maximum principle
    Brzezniak, Zdzislaw
    Hausenblas, Erika
    Razafimandimby, Paul Andre
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2019, 7 (03): : 417 - 475
  • [3] Strong solutions for SPDE with locally monotone coefficients driven by Levy noise
    Brzezniak, Zdzislaw
    Liu, Wei
    Zhu, Jiahui
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 17 : 283 - 310
  • [4] 2D stochastic Navier-Stokes equations driven by jump noise
    Brzezniak, Zdzislaw
    Hausenblas, Erika
    Zhu, Jiahui
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 79 : 122 - 139
  • [5] Budhiraja A., 2000, PROBAB MATH STAT, P39
  • [6] Large deviations for infinite dimensional stochastic dynamical systems
    Budhiraja, Amarjit
    Dupuis, Paul
    Maroulas, Vasileios
    [J]. ANNALS OF PROBABILITY, 2008, 36 (04) : 1390 - 1420
  • [7] Large deviations for stochastic partial differential equations driven by a Poisson random measure
    Budhiraja, Amarjit
    Chen, Jiang
    Dupuis, Paul
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (02) : 523 - 560
  • [8] Variational representations for continuous time processes
    Budhiraja, Amarjit
    Dupuis, Paul
    Maroulas, Vasileios
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (03): : 725 - 747
  • [9] Stochastic 2D Hydrodynamical Type Systems: Well Posedness and Large Deviations
    Chueshov, Igor
    Millet, Annie
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2010, 61 (03) : 379 - 420
  • [10] ERICKSEN JL, 1962, ARCH RATION MECH AN, V9, P371