Sample Size Optimization for Digital Soil Mapping: An Empirical Example

被引:6
作者
Saurette, Daniel D. [1 ,2 ]
Heck, Richard J. [1 ]
Gillespie, Adam W. [1 ]
Berg, Aaron A. [3 ]
Biswas, Asim [1 ]
机构
[1] Univ Guelph, Sch Environm Sci, 50 Stone Rd East, Guelph, ON N1G 2W1, Canada
[2] Ontario Minist Agr Food & Rural Affairs, 1 Stone Rd West, Guelph, ON N1G 2Y4, Canada
[3] Univ Guelph, Dept Geog Environm & Geomat, 50 Stone Rd East, Guelph, ON N1G 2W1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Jensen-Shannon divergence; sample size; sample density; conditioned Latin hypercube; feature space coverage; simple random sampling; calibration; learning curve; PERFORMANCE; PREDICTION; AREA;
D O I
10.3390/land13030365
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the evolving field of digital soil mapping (DSM), the determination of sample size remains a pivotal challenge, particularly for large-scale regional projects. We introduced the Jensen-Shannon Divergence (DJS), a novel tool recently applied to DSM, to determine optimal sample sizes for a 2790 km2 area in Ontario, Canada. Utilizing 1791 observations, we generated maps for cation exchange capacity (CEC), clay content, pH, and soil organic carbon (SOC). We then assessed sample sets ranging from 50 to 4000 through conditioned Latin hypercube sampling (cLHS), feature space coverage sampling (FSCS), and simple random sampling (SRS) to calibrate random forest models, analyzing performance via concordance correlation coefficient and root mean square error. Findings reveal DJS as a robust estimator for optimal sample sizes-865 for cLHS, 874 for FSCS, and 869 for SRS, with property-specific optimal sizes indicating the potential for enhanced DSM accuracy. This methodology facilitates a strategic approach to sample size determination, significantly improving the precision of large-scale soil mapping. Conclusively, our research validates the utility of DJS in DSM, offering a scalable solution. This advancement holds considerable promise for improving soil management and sustainability practices, underpinning the critical role of precise soil data in agricultural productivity and environmental conservation.
引用
收藏
页数:21
相关论文
共 89 条
[1]  
[Anonymous], 2011, Miscellaneous Release-DATA 126-Revision1
[2]   GlobalSoilMap: Toward a Fine-Resolution Global Grid of Soil Properties [J].
Arrouays, Dominique ;
Grundy, Michael G. ;
Hartemink, Alfred E. ;
Hempel, Jonathan W. ;
Heuvelink, Gerard B. M. ;
Hong, S. Young ;
Lagacherie, Philippe ;
Lelyk, Glenn ;
McBratney, Alexander B. ;
McKenzie, Neil J. ;
Mendonca-Santos, Maria D. L. ;
Minasny, Budiman ;
Montanarella, Luca ;
Odeh, Inakwu O. A. ;
Sanchez, Pedro A. ;
Thompson, James A. ;
Zhang, Gan-Lin .
ADVANCES IN AGRONOMY, VOL 125, 2014, 125 :93-+
[3]   Spatial modelling with Euclidean distance fields and machine learning [J].
Behrens, T. ;
Schmidt, K. ;
Rossel, R. A. Viscarra ;
Gries, P. ;
Scholten, T. ;
MacMillan, R. A. .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2018, 69 (05) :757-770
[4]  
Belanger J.R., 1995, Surficial GeologyOttawa, Ontario-Quebec (31G/5)
[5]  
Beven K.J., 1979, Hydrological Sciences Bulletin, V24, P43, DOI [DOI 10.1080/02626667909491834, 10.1080/02626667909491834]
[6]   Modelling soil attribute depth functions with equal-area quadratic smoothing splines [J].
Bishop, TFA ;
McBratney, AB ;
Laslett, GM .
GEODERMA, 1999, 91 (1-2) :27-45
[7]   Sampling Designs for Validating Digital Soil Maps: A Review [J].
Biswas, Asim ;
Zhang, Yakun .
PEDOSPHERE, 2018, 28 (01) :1-15
[8]  
Böhner J, 2009, DEV SOIL SCI, V33, P195, DOI 10.1016/S0166-2481(08)00008-1
[9]  
Boehner J., 2002, Soil Classification 2001, P213
[10]  
Bohner J., 2006, SAGA ANAL MODELLING, V115, P13