Optimization of low voltage distribution network configuration using forecasts based on Advanced Metering Infrastructure data

被引:0
作者
Helt, Patrycja [1 ]
Gulczynski, Tomasz [2 ]
Baczynski, Dariusz [1 ]
机构
[1] Inst Elektroenergetyki, Politech Warszawska, Ul Koszykowa 75, PL-00662 Warsaw, Poland
[2] Globema sp zoo, Ul Wita Stwosza, PL-02661 Warsaw, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2024年 / 100卷 / 03期
关键词
power distribution networks; optimization of network configuration; demand forecasting; IT system; DISTRIBUTION-SYSTEMS; RECONFIGURATION; ALGORITHM; SEARCH;
D O I
10.15199/48.2024.03.46
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The article presents a practical approach to optimizing the configuration of a real LV distribution network. The set of input data, optimization methods and obtained results are described. The optimal configurations were determined on the basis of load forecasts in individual load nodes. Forecasts were made using four forecasting methods. Optimization of the network configuration was carried out using two developed methods: heuristic and genetic. Based on the simulations, practical conclusions were formulated.
引用
收藏
页码:262 / 268
页数:7
相关论文
共 35 条
  • [1] A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration
    Azizivahed, Ali
    Narimani, Hossein
    Naderi, Ehsan
    Fathi, Mehdi
    Narimani, Mohammad Rasoul
    [J]. ENERGY, 2017, 138 : 355 - 373
  • [2] Baczynski D., 2012, CONTROL AND CYBERNETICS, V41, P667
  • [3] Baczynski D., 2013, Metody inteligencji obliczeniowej w elektroenergetyce
  • [4] Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches
    Bouktif, Salah
    Fiaz, Ali
    Ouni, Ali
    Serhani, Mohamed Adel
    [J]. ENERGIES, 2018, 11 (07)
  • [5] OPTIMAL NETWORK RECONFIGURATIONS IN DISTRIBUTION-SYSTEMS .2. SOLUTION ALGORITHMS AND NUMERICAL RESULTS
    CHIANG, HD
    JEANJUMEAU, R
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 1990, 5 (03) : 1568 - 1574
  • [6] Assessment of optimal distribution network reconfiguration results using stochastic dominance concepts
    Chicco, Gianfranco
    Mazza, Andrea
    [J]. SUSTAINABLE ENERGY GRIDS & NETWORKS, 2017, 9 : 75 - 79
  • [7] Choi H, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM)
  • [8] DISTRIBUTION FEEDER RECONFIGURATION FOR LOSS REDUCTION
    CIVANLAR, S
    GRAINGER, JJ
    YIN, H
    LEE, SSH
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 1988, 3 (03) : 1217 - 1223
  • [9] A Review of Auto-Regressive Methods Applications to Short-Term Demand Forecasting in Power Systems
    Czapaj, Rafal
    Kaminski, Jacek
    Soltysik, Maciej
    [J]. ENERGIES, 2022, 15 (18)
  • [10] Intelligent Forecasting and Optimization in Electrical Power Systems: Advances in Models and Applications
    Dudek, Grzegorz
    Piotrowski, Pawel
    Baczynski, Dariusz
    [J]. ENERGIES, 2023, 16 (07)