Long-term performance of PEM water electrolysis cells with 3D printed electrodes and low catalyst loading

被引:7
作者
Batalla, B. Sanchez [1 ,2 ]
Laube, A. [3 ]
Hofer, A. [2 ]
Zallmann, S. [4 ]
Korner, C. [4 ]
Struckmann, T. [3 ]
Bachmann, J. [2 ]
Weidlich, C. [1 ]
机构
[1] DECHEMA Forschungsinst, Appl Electrochem, Theodor Heuss Allee 25, D-60486 Frankfurt, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Chem & Pharm, Chem Thin Film Mat, IZNF, Cauerstr 3, D-91058 Erlangen, Germany
[3] Hamburg Univ Appl Sci, Dept Mech Engn & Prod Management, Berliner Tor 21, D-20099 Hamburg, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Chair Mat Sci & Engn Met, Martensstr 5, D-91058 Erlangen, Germany
关键词
Degradation; Distribution of relaxation times; Electrochemical impedance spectroscopy; Low catalyst loading; PEM water electrolysis cells; 3D printing; LIQUID/GAS DIFFUSION LAYERS; HYDROGEN-PRODUCTION; DEGRADATION; PLATINUM; LOSSES;
D O I
10.1016/j.ijhydene.2024.01.364
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton Exchange Membrane Water Electrolyzers (PEMEL) are promising for the production of green hydrogen, but costs have to be reduced and lifetime has to be improved. In this study we investigate PEMEL with low catalyst loading achieved by Atomic Layer Deposition (ALD) and 3D printing of the electrodes. Degradation processes were characterized and allocated using different electrochemical and physicochemical methods. The cell setup was optimized using Distribution of Relaxation Times Analysis (DRT) of the Electrochemical Impedance Spectroscopy (EIS) measurements and the long-term performance of the optimized cell was investigated using different electrolytes (sulfuric acid and deionized water).
引用
收藏
页码:480 / 491
页数:12
相关论文
共 60 条
[1]   Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack [J].
Araya, Samuel Simon ;
Zhou, Fan ;
Sahlin, Simon Lennart ;
Thomas, Sobi ;
Jeppesen, Christian ;
Kaer, Soren Knudsen .
ENERGIES, 2019, 12 (01)
[2]   Review-Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development [J].
Babic, Ugljesa ;
Suermann, Michel ;
Buechi, Felix N. ;
Gubler, Lorenz ;
Schmidt, Thomas J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) :F387-F399
[3]   Investigation of the degradation of proton exchange membrane water electrolysis cells using electrochemical impedance spectroscopy with distribution of relaxation times analysis [J].
Batalla, B. Sanchez ;
Bachmann, J. ;
Weidlich, C. .
ELECTROCHIMICA ACTA, 2024, 473
[4]   Degradation studies of proton exchange membrane water electrolysis cells with low platinum group metals- Catalyst coating achieved by atomic layer deposition [J].
Batalla, B. Sanchez ;
Laube, A. ;
Hofer, A. ;
Struckmann, T. ;
Bachmann, J. ;
Weidlich, C. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (94) :39719-39730
[5]   Effect of the IrOx Conductivity on the Anode Electrode/Porous Transport Layer Interfacial Resistance in PEM Water Electrolyzers [J].
Bernt, M. ;
Schramm, C. ;
Schroeter, J. ;
Gebauer, C. ;
Byrknes, J. ;
Eickes, C. ;
Gasteiger, H. A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (08)
[6]   Analysis of Voltage Losses in PEM Water Electrolyzers with Low Platinum Group Metal Loadings [J].
Bernt, Maximilian ;
Siebel, Armin ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (05) :F305-F314
[7]   A LINEAR KRONIG-KRAMERS TRANSFORM TEST FOR IMMITTANCE DATA VALIDATION [J].
BOUKAMP, BA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (06) :1885-1894
[8]   3D Printing for Electrochemical Energy Applications [J].
Browne, Michelle P. ;
Redondo, Edurne ;
Pumera, Martin .
CHEMICAL REVIEWS, 2020, 120 (05) :2783-2810
[9]   From Catalyst Coated Membranes to Porous Transport Electrode Based Configurations in PEM Water Electrolyzers [J].
Buehler, Melanie ;
Holzapfel, Peter ;
McLaughlin, David ;
Thiele, Simon .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (14) :F1070-F1078
[10]   3D-Printed electrodes for membraneless water electrolysis [J].
Bui, Justin C. ;
Davis, Jonathan T. ;
Esposito, Daniel V. .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (01) :213-225