scFSNN: a feature selection method based on neural network for single-cell RNA-seq data

被引:3
作者
Peng, Minjiao [1 ,2 ,3 ]
Lin, Baoqin [4 ]
Zhang, Jun [1 ]
Zhou, Yan [1 ]
Lin, Bingqing [1 ]
机构
[1] Shenzhen Univ, Sch Math Sci, Shenzhen 518060, Guangdong, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, Renmin St, Changchun 130000, Jilin, Peoples R China
[3] Northeast Normal Univ, KLAS, Renmin St, Changchun 130000, Jilin, Peoples R China
[4] Guangzhou Univ Chinese Med, Affiliated Hosp 1, Expt Ctr, Guangzhou 510405, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature selection; Deep neural network; FDR control; CLASSIFICATION;
D O I
10.1186/s12864-024-10160-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
While single-cell RNA sequencing (scRNA-seq) allows researchers to analyze gene expression in individual cells, its unique characteristics like over-dispersion, zero-inflation, high gene-gene correlation, and large data volume with many features pose challenges for most existing feature selection methods. In this paper, we present a feature selection method based on neural network (scFSNN) to solve classification problem for the scRNA-seq data. scFSNN is an embedded method that can automatically select features (genes) during model training, control the false discovery rate of selected features and adaptively determine the number of features to be eliminated. Extensive simulation and real data studies demonstrate its excellent feature selection ability and predictive performance.
引用
收藏
页数:11
相关论文
共 38 条
[1]   Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development [J].
Adam, Mike ;
Potter, Andrew S. ;
Potter, S. Steven .
DEVELOPMENT, 2017, 144 (19) :3625-3632
[2]   scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data [J].
Alquicira-Hernandez, Jose ;
Sathe, Anuja ;
Ji, Hanlee P. ;
Quan Nguyen ;
Powell, Joseph E. .
GENOME BIOLOGY, 2019, 20 (01)
[3]  
Angerer Philipp, 2017, Current Opinion in Systems Biology, V4, P85, DOI 10.1016/j.coisb.2017.07.004
[4]   Low-Avidity CD4+ T Cell Responses to SARS-CoV-2 in Unexposed Individuals and Humans with Severe COVID-19 [J].
Bacher, Petra ;
Rosati, Elisa ;
Esser, Daniela ;
Martini, Gabriela Rios ;
Saggau, Carina ;
Schiminsky, Esther ;
Dargvainiene, Justina ;
Schroeder, Ina ;
Wieters, Imke ;
Khodamoradi, Yascha ;
Eberhardt, Fabian ;
Vehreschild, Maria J. G. T. ;
Neb, Holger ;
Sonntagbauer, Michael ;
Conrad, Claudio ;
Tran, Florian ;
Rosenstiel, Philip ;
Markewitz, Robert ;
Wandinger, Klaus-Peter ;
Augustin, Max ;
Rybniker, Jan ;
Kochanek, Matthias ;
Leypoldt, Frank ;
Cornely, Oliver A. ;
Koehler, Philipp ;
Franke, Andre ;
Scheffold, Alexander .
IMMUNITY, 2020, 53 (06) :1258-+
[5]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[6]   SPARSim single cell: a count data simulator for scRNA-seq data [J].
Baruzzo, Giacomo ;
Patuzzi, Ilaria ;
Di Camillo, Barbara .
BIOINFORMATICS, 2020, 36 (05) :1468-1475
[7]  
Breiman Leo., 1998, breast, V699, P2
[8]   A survey on feature selection methods [J].
Chandrashekar, Girish ;
Sahin, Ferat .
COMPUTERS & ELECTRICAL ENGINEERING, 2014, 40 (01) :16-28
[9]   Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity [J].
Chen, Renchao ;
Wu, Xiaoji ;
Jiang, Lan ;
Zhang, Yi .
CELL REPORTS, 2017, 18 (13) :3227-3241
[10]   Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis [J].
Dong, Ji ;
Hu, Yuqiong ;
Fan, Xiaoying ;
Wu, Xinglong ;
Mao, Yunuo ;
Hu, Boqiang ;
Guo, Hongshan ;
Wen, Lu ;
Tang, Fuchou .
GENOME BIOLOGY, 2018, 19