Risk-Sensitive Control of Vibratory Energy Harvesters

被引:0
|
作者
Ligeikis, Connor [1 ]
Scruggs, Jeff [2 ]
机构
[1] Lafayette Coll, Dept Mech Engn, Easton, PA 18042 USA
[2] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48108 USA
来源
2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC | 2023年
基金
美国国家科学基金会;
关键词
STOCHASTIC LINEAR-SYSTEMS; WAVE ENERGY;
D O I
10.1109/CDC49753.2023.10383546
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Linear-quadratic-Gaussian (LQG) optimal control theory can be used to maximize the average electrical power generated by a vibratory energy harvester subjected to random disturbances. However, feedback controllers designed using the LQG framework often require large peak power flows for their successful implementation, which may be undesirable for several reasons. In this paper, we propose using a risk-sensitive performance measure to synthesize control laws for stochastic vibratory energy harvesters. The proposed methodology is applied in two examples, in which we show how the risk-sensitive parameter can be systematically tuned to maximize power generation and mitigate excessive power flows. The first example involves a simple single-degree-of-freedom oscillator subjected to a bandpass filtered noise excitation, and the second pertains to ocean wave energy harvesting.
引用
收藏
页码:2541 / 2548
页数:8
相关论文
共 50 条
  • [41] Robust predictive control for heaving wave energy converters
    Jama, Mohammed
    Wahyudie, Addy
    Noura, Hassan
    CONTROL ENGINEERING PRACTICE, 2018, 77 : 138 - 149
  • [42] Control of the CCell Oscillating Surge Wave Energy Converter
    Hillis, A. J.
    Sell, N. P.
    Chandel, D. R. S.
    Plummer, A. R.
    IFAC PAPERSONLINE, 2017, 50 (01): : 14686 - 14691
  • [43] OWC wave energy devices with air flow control
    Falcao, AFD
    Justino, PAP
    OCEAN ENGINEERING, 1999, 26 (12) : 1275 - 1295
  • [44] On the control design of wave energy converters with wave prediction
    Abdelkhalik O.
    Robinett R.
    Zou S.
    Bacelli G.
    Coe R.
    Bull D.
    Wilson D.
    Korde U.
    Abdelkhalik, Ossama (ooabdelk@mtu.edu), 2016, Springer International Publishing (02) : 473 - 483
  • [45] Model predictive control of hydrogen production by renewable energy
    Serna, Alvaro
    Normey-Rico, Julio E.
    Tadeo, Fernando
    2015 6TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2015,
  • [46] Optimizing energy production of an Inertial Sea Wave Energy Converter via Model Predictive Control
    Bracco, G.
    Canale, M.
    Cerone, V
    CONTROL ENGINEERING PRACTICE, 2020, 96
  • [47] Modeling and control strategy analysis of a hydraulic energy-storage wave energy conversion system
    Li, Yanhua
    Wang, Xilian
    Fang, Xinyu
    Liu, Yuenan
    Zhao, Pengyu
    Cui, Ruizhen
    RENEWABLE ENERGY, 2022, 182 : 969 - 981
  • [48] Research on hydraulic energy-storage wave energy generation system and its control scheme
    Li Y.
    Wang X.
    Wang X.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (01): : 219 - 227
  • [49] Causal control design for wave energy converters with finite stroke
    Scruggs, J. T.
    IFAC PAPERSONLINE, 2017, 50 (01): : 15678 - 15685
  • [50] Control Strategy for AWS based Wave Energy Conversion System
    Wu, F.
    Zhang, X. P.
    Ju, P.
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,