Construction of an economical xylose-utilizing Saccharomyces cerevisiae and its ethanol fermentation

被引:6
作者
Li, Fan [1 ,2 ,3 ]
Bai, Wenxin [1 ]
Zhang, Yuan [1 ,3 ]
Zhang, Zijian [1 ]
Zhang, Deguo [3 ,4 ]
Shen, Naidong [1 ,3 ]
Yuan, Jingwei [2 ,3 ]
Zhao, Guomiao [1 ,3 ]
Wang, Xiaoyan [1 ,3 ]
机构
[1] COFCO Corp, Nutr & Hlth Res Inst, 4 Rd, Beijing 102209, Peoples R China
[2] COFCO Biochem & Bioenergy Zhaodong Co Ltd, 24 Zhaolan Rd, Suihua 151100, Heilongjiang, Peoples R China
[3] COFCO Corp, COFCO Fortune Pl,8 Chao Yang Men South St, Beijing 100020, Peoples R China
[4] COFCO Biotechnol Co Ltd, 1 Zhongliang Ave, Bengbu 233010, Anhui, Peoples R China
关键词
Saccharomyces cerevisiae; industrial ethanol production; industrial material domestication; pilot-scale fermentation; transcriptome analysis; PENTOSE-PHOSPHATE PATHWAY; ADAPTIVE EVOLUTION; DIRECTED EVOLUTION; XYLITOL PRODUCTION; DELTA-INTEGRATION; CO-FERMENTATION; YEAST; ISOMERASE; EXPRESSION; GLUCOSE;
D O I
10.1093/femsyr/foae001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Traditional industrial Saccharomyces cerevisiae could not metabolize xylose due to the lack of a specific enzyme system for the reaction from xylose to xylulose. This study aims to metabolically remould industrial S. cerevisiae for the purpose of utilizing both glucose and xylose with high efficiency. Heterologous gene xylA from Piromyces and homologous genes related to xylose utilization were selected to construct expression cassettes and integrated into genome. The engineered strain was domesticated with industrial material under optimizing conditions subsequently to further improve xylose utilization rates. The resulting S. cerevisiae strain ABX0928-0630 exhibits a rapid growth rate and possesses near 100% xylose utilization efficiency to produce ethanol with industrial material. Pilot-scale fermentation indicated the predominant feature of ABX0928-0630 for industrial application, with ethanol yield of 0.48 g/g sugars after 48 hours and volumetric xylose consumption rate of 0.87 g/l/h during the first 24 hours. Transcriptome analysis during the modification and domestication process revealed a significant increase in the expression level of pathways associated with sugar metabolism and sugar sensing. Meanwhile, genes related to glycerol lipid metabolism exhibited a pattern of initial increase followed by a subsequent decrease, providing a valuable reference for the construction of efficient xylose-fermenting strains. This research constructed a remarkable yeast strain able to utilize straws effectively to produce fuel ethanol. This strain shows promising prospects for industrial production better than other two commercial strains.
引用
收藏
页数:10
相关论文
共 52 条
[1]   Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae [J].
Almeida, Joao R. M. ;
Runquist, David ;
Nogue, Violeta Sanchez I. ;
Liden, Gunnar ;
Gorwa-Grauslund, Marie F. .
BIOTECHNOLOGY JOURNAL, 2011, 6 (03) :286-299
[2]   d-Xylose consumption by nonrecombinant Saccharomyces cerevisiae: A review [J].
Andrea Patino, Margareth ;
Pablo Ortiz, Juan ;
Velasquez, Mario ;
Stambuk, Boris U. .
YEAST, 2019, 36 (09) :541-556
[3]   Refined solution structure of the DNA-binding domain of GAL4 and use of 3J(113Cd,1H) in structure determination [J].
Baleja, JD ;
Thanabal, V ;
Wagner, G .
JOURNAL OF BIOMOLECULAR NMR, 1997, 10 (04) :397-401
[4]   Functional Expression of a Bacterial Xylose Isomerase in Saccharomyces cerevisiae [J].
Brat, Dawid ;
Boles, Eckhard ;
Wiedemann, Beate .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (08) :2304-2311
[5]   δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol [J].
Cho, KM ;
Yoo, YJ ;
Kang, HS .
ENZYME AND MICROBIAL TECHNOLOGY, 1999, 25 (1-2) :23-30
[6]   Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering [J].
Demeke, Mekonnen M. ;
Dietz, Heiko ;
Li, Yingying ;
Foulquie-Moreno, Maria R. ;
Mutturi, Sarma ;
Deprez, Sylvie ;
Den Abt, Tom ;
Bonini, Beatriz M. ;
Liden, Gunnar ;
Dumortier, Francoise ;
Verplaetse, Alex ;
Boles, Eckhard ;
Thevelein, Johan M. .
BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
[7]   Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains [J].
dos Santos, Leandro Vieira ;
Carazzolle, Marcelo Falsarella ;
Nagamatsu, Sheila Tiemi ;
Sampaio, Nadia Maria Vieira ;
Almeida, Ludimila Dias ;
Siqueira Pirolla, Renan Augusto ;
Borelli, Guilherme ;
Ribeiro Correa, Thamy Livia ;
Argueso, Juan Lucas ;
Guimaraes Pereira, Goncalo Amarante .
SCIENTIFIC REPORTS, 2016, 6
[8]  
dosSantos L. V., 2016, Ind. Biotechnol, V12, P40, DOI DOI 10.1089/IND.2015.0017
[9]  
Fongaro G., 2019, ETHANOL GREEN ALTERN, V1st ed., P57
[10]   Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation [J].
Ha, Suk-Jin ;
Galazka, Jonathan M. ;
Kim, Soo Rin ;
Choi, Jin-Ho ;
Yang, Xiaomin ;
Seo, Jin-Ho ;
Glass, N. Louise ;
Cate, Jamie H. D. ;
Jin, Yong-Su .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (02) :504-509