A New Inverse Extended Weibull Distribution for Modelling Insurance Loss Data

被引:0
作者
Yu, Shilin [1 ]
Li, Xuan [1 ]
Choy, S. T. Boris [1 ]
机构
[1] Univ Sydney, Discipline Business Analyt, Sydney, NSW 2006, Australia
关键词
Insurance data; Weibull-type distributions; extreme value distributions; maximum likelihood estimation; Akaike information criterion; FAMILY;
D O I
10.1142/S0218488523400196
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new three-parameter inverse Weibull-type distribution via a similar way of constructing a skew normal distribution. The additional shape parameter increases the distribution's modelling capability as other three-parameter inverse Weibull-type distributions. The mathematical properties of this inverse extended Weibull distribution are studied and proven. In the empirical study of four insurance datasets from Australia, Denmark and the USA, we show that the proposed distribution performs very well compared with other three-parameter competitors.
引用
收藏
页码:307 / 322
页数:16
相关论文
共 22 条
[1]   The Extended Inverse Weibull Distribution: Properties and Applications [J].
Alkarni, Said ;
Afify, Ahmed Z. ;
Elbatal, I ;
Elgarhy, M. .
COMPLEXITY, 2020, 2020 (2020)
[2]  
Ananda M. M. A., 2005, SCAND ACTUAR J, V2005, P334, DOI [10.1080/03461230510009763, DOI 10.1080/03461230510009763]
[3]   MODELLING INSURANCE LOSSES USING CONTAMINATED GENERALISED BETA TYPE-II DISTRIBUTION [J].
Chan, J. S. K. ;
Choy, S. T. B. ;
Makov, U. E. ;
Landsman, Z. .
ASTIN BULLETIN-THE JOURNAL OF THE INTERNATIONAL ACTUARIAL ASSOCIATION, 2018, 48 (02) :871-904
[4]   A simple derivation of moments of the Exponentiated Weibull distribution [J].
Choudhury, A .
METRIKA, 2005, 62 (01) :17-22
[5]   On the Marshall-Olkin extended Weibull distribution [J].
Cordeiro, Gauss M. ;
Lemonte, Artur J. .
STATISTICAL PAPERS, 2013, 54 (02) :333-353
[6]  
CUMMINS JD, 1978, J RISK INSUR, V45, P27, DOI 10.2307/251806
[7]  
DeJong P, 2008, INT SER ACTUAR SCI, P1, DOI 10.1017/CBO9780511755408
[8]   Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models? [J].
Eling, Martin .
INSURANCE MATHEMATICS & ECONOMICS, 2012, 51 (02) :239-248
[9]  
Flaih A, 2012, APPL MATH INFORM SCI, V6, P167
[10]   RELIABILITY-ANALYSIS OF COMMERCIAL VEHICLE ENGINES [J].
KELLER, AZ ;
GIBLIN, MT ;
FARNWORTH, NR .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 1985, 10 (01) :15-25