An Efficient Graph Convolutional RVFL Network for Hyperspectral Image Classification

被引:1
|
作者
Zhang, Zijia [1 ,2 ]
Cai, Yaoming [3 ]
Liu, Xiaobo [4 ]
Zhang, Min [5 ]
Meng, Yan [1 ,2 ]
机构
[1] Hubei Univ, Sch Artificial Intelligence, Wuhan 430062, Peoples R China
[2] Hubei Univ, Key Lab Intelligent Sensing Syst & Secur, Minist Educ, Wuhan 430062, Peoples R China
[3] Zhongnan Univ Econ & Law, Sch Informat & Safety Engn, Wuhan 430073, Peoples R China
[4] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[5] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Hong Kong, Peoples R China
关键词
graph convolutional network; graph-level classification; hyperspectral image; RVFL network; SEGMENTATION; FUSION;
D O I
10.3390/rs16010037
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Graph convolutional networks (GCN) have emerged as a powerful alternative tool for analyzing hyperspectral images (HSIs). Despite their impressive performance, current works strive to make GCN more sophisticated through either elaborate architecture or fancy training tricks, making them prohibitive for HSI data in practice. In this paper, we present a Graph Convolutional RVFL Network (GCRVFL), a simple but efficient GCN for hyperspectral image classification. Specifically, we generalize the classic RVFL network into the graph domain by using graph convolution operations. This not only enables RVFL to handle graph-structured data, but also avoids iterative parameter adjustment by employing an efficient closed-form solution. Unlike previous works that perform HSI classification under a transductive framework, we regard HSI classification as a graph-level classification task, which makes GCRVFL scalable to large-scale HSI data. Extensive experiments on three benchmark data sets demonstrate that the proposed GCRVFL is able to achieve competitive results with fewer trainable parameters and adjustable hyperparameters and higher computational efficiency. In particular, we show that our approach is comparable to many existing approaches, including deep CNN models (e.g., ResNet and DenseNet) and popular GCN models (e.g., SGC and APPNP).
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Graph-in-Graph Convolutional Network for Hyperspectral Image Classification
    Jia S.
    Jiang S.
    Zhang S.
    Xu M.
    Jia X.
    IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (01) : 1157 - 1171
  • [2] Hyperspectral Image Classification With Contrastive Graph Convolutional Network
    Yu, Wentao
    Wan, Sheng
    Li, Guangyu
    Yang, Jian
    Gong, Chen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [3] Semisupervised graph convolutional network for hyperspectral image classification
    Liu, Bing
    Gao, Kuiliang
    Yu, Anzhu
    Guo, Wenyue
    Wang, Ruirui
    Zuo, Xibing
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (02):
  • [4] Fuzzy graph convolutional network for hyperspectral image classification
    Xu, Jindong
    Li, Kang
    Li, Ziyi
    Chong, Qianpeng
    Xing, Haihua
    Xing, Qianguo
    Ni, Mengying
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [5] Spatial Pooling Graph Convolutional Network for Hyperspectral Image Classification
    Zhang, Xiangrong
    Chen, Shutong
    Zhu, Peng
    Tang, Xu
    Feng, Jie
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Global Consistent Graph Convolutional Network for Hyperspectral Image Classification
    Ding, Yun
    Guo, Yuanyuan
    Chong, Yanwen
    Pan, Shaoming
    Feng, Jinpeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [7] Multiscale Dynamic Graph Convolutional Network for Hyperspectral Image Classification
    Wan, Sheng
    Gong, Chen
    Zhong, Ping
    Du, Bo
    Zhang, Lefei
    Yang, Jian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3162 - 3177
  • [8] Attention Graph Convolutional Network for Disjoint Hyperspectral Image Classification
    Jamali, Ali
    Roy, Swalpa Kumar
    Hong, Danfeng
    Atkinson, Peter M.
    Ghamisi, Pedram
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [9] EGCN: Enhanced Graph Convolutional Network for Hyperspectral Image Classification
    Yang, Chunlan
    Xue, Dawei
    PROCEEDINGS OF THE 2024 3RD INTERNATIONAL CONFERENCE ON NETWORKS, COMMUNICATIONS AND INFORMATION TECHNOLOGY, CNCIT 2024, 2024, : 150 - 155
  • [10] Data Augmented Graph Convolutional Network for Hyperspectral Image Classification
    Yang, Chunlan
    Xue, Dawei
    2024 2ND ASIA CONFERENCE ON COMPUTER VISION, IMAGE PROCESSING AND PATTERN RECOGNITION, CVIPPR 2024, 2024,