Polymer nanocomposite dielectrics for capacitive energy storage

被引:104
|
作者
Yang, Minzheng [1 ]
Guo, Mengfan [1 ]
Xu, Erxiang [1 ]
Ren, Weibin [1 ]
Wang, Danyang [2 ]
Li, Sean [2 ]
Zhang, Shujun [3 ]
Nan, Ce-Wen [1 ]
Shen, Yang [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing, Peoples R China
[2] Univ New South Wales, Sch Mat Sci & Engn, Sydney, Australia
[3] Univ Wollongong, Inst Superconducting & Elect Mat, AIIM, Wollongong, Australia
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
DIPOLAR GLASS POLYMERS; HIGH-TEMPERATURE; STRUCTURED NANOCOMPOSITES; DISCHARGE EFFICIENCY; THERMAL-CONDUCTIVITY; BREAKDOWN STRENGTH; DENSITY; CONSTANT; BEHAVIOR; COMPOSITES;
D O I
10.1038/s41565-023-01541-w
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Owing to their excellent discharged energy density over a broad temperature range, polymer nanocomposites offer immense potential as dielectric materials in advanced electrical and electronic systems, such as intelligent electric vehicles, smart grids and renewable energy generation. In recent years, various nanoscale approaches have been developed to induce appreciable enhancement in discharged energy density. In this Review, we discuss the state-of-the-art polymer nanocomposites with improved energy density from three key aspects: dipole activity, breakdown resistance and heat tolerance. We also describe the physical properties of polymer nanocomposite interfaces, showing how the electrical, mechanical and thermal characteristics impact energy storage performances and how they are interrelated. Further, we discuss multi-level nanotechnologies including monomer design, crosslinking, polymer blending, nanofiller incorporation and multilayer fabrication. We conclude by presenting the current challenges and future opportunities in this field. The Review discusses the state-of-the-art polymer nanocomposites from three key aspects: dipole activity, breakdown resistance and heat tolerance for capacitive energy storage applications.
引用
收藏
页码:588 / 603
页数:16
相关论文
共 50 条
  • [1] Polymer Dielectrics and Their Nanocomposites for Capacitive Energy Storage Applications
    Cheng, Sang
    Li, Yu-shu
    Liang, Jia-jie
    Li, Qi
    ACTA POLYMERICA SINICA, 2020, 51 (05): : 469 - 483
  • [2] Advanced polymer dielectrics for high temperature capacitive energy storage
    Zhou, Yao
    Wang, Qing
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (24)
  • [3] Polymer-Ceramic Nanocomposite Dielectrics for Advanced Energy Storage
    Siddabattuni, Sasidhar
    Schuman, Thomas P.
    POLYMER COMPOSITES FOR ENERGY HARVESTING, CONVERSION, AND STORAGE, 2014, 1161 : 165 - +
  • [4] Polymer dielectrics for capacitive energy storage: From theories, materials to industrial capacitors
    He, Qifa
    Sun, Kai
    Shi, Zhicheng
    Liu, Yao
    Fan, Runhua
    MATERIALS TODAY, 2023, 68 : 298 - 333
  • [5] Polymer nanocomposite dielectrics for electrical energy storage
    Shen, Yang
    Zhang, Xin
    Li, Ming
    Lin, Yuanhua
    Nan, Ce-Wen
    NATIONAL SCIENCE REVIEW, 2017, 4 (01) : 23 - 25
  • [6] Research progress of polymer based dielectrics for high-temperature capacitor energy storage
    Dong Jiu-Feng
    Deng Xing-Lei
    Niu Yu-Juan
    Pan Zi-Zhao
    Wang Hong
    ACTA PHYSICA SINICA, 2020, 69 (21)
  • [7] Computational Simulation for Breakdown and Energy Storage Performances with Optimization in Polymer Dielectrics
    Yue, Dong
    Yin, Jing-Hua
    Zhang, Wen-Chao
    Cheng, Xiao-Xing
    Zhang, Mao-Hua
    Wang, Jian-Jun
    Feng, Yu
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (30)
  • [8] Polymer-based Nanocomposite Dielectrics with High Energy Storage Capacity
    Jiang W.
    Xie Y.
    Zhang Z.
    Xie, Yunchuan (ycxie@xjtu.edu.cn), 1600, Science Press (43): : 2234 - 2240
  • [9] High-temperature polymer dielectrics with superior capacitive energy storage performance
    Qin, Hongmei
    Song, Jinhui
    Liu, Man
    Zhang, Yibo
    Qin, Shiyu
    Chen, Hang
    Shen, Kangdi
    Wang, Shan
    Li, Qi
    Yang, Quanling
    Xiong, Chuanxi
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [10] Challenges and Opportunities of Polymer Nanodielectrics for Capacitive Energy Storage
    Zhang, Guoqiang
    Li, Qiong
    Allahyarov, Elshad
    Li, Yue
    Zhu, Lei
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (32) : 37939 - 37960