Exploiting Purine as an Internal Standard for SERS Quantification of Purine Derivative Molecules Released by Bacteria

被引:6
作者
Cheng, Ho-Wen [1 ,2 ,3 ]
Tsai, Hsin-Mei [3 ]
Wang, Yuh-Lin [3 ]
机构
[1] Acad Sinica, Mol Sci & Technol Program, Taiwan Int Grad Program, Taipei 106319, Taiwan
[2] Natl Taiwan Univ, Int Grad Program Mol Sci & Technol, Taipei 106319, Taiwan
[3] Acad Sinica, Inst Atom & Mol Sci, Taipei 106319, Taiwan
关键词
ENHANCED RAMAN-SPECTROSCOPY; SPECTRA; ARRAYS;
D O I
10.1021/acs.analchem.3c03259
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Surface-enhanced Raman scattering (SERS) is a highly sensitive technique used in diverse biomedical applications including rapid antibiotic susceptibility testing (AST). However, signal fluctuation in SERS, particularly the widespread of signals measured from different batches of SERS substrates, compromises its reliability and introduces potential errors in SERS-AST. In this study, we investigate the use of purine as an internal standard (IS) to recalibrate SERS signals and quantify the concentrations of two important purine derivatives, adenine and hypoxanthine, which are the most important biomarkers used in SERS-AST. Our findings demonstrate that purine IS effectively mitigates SERS signal fluctuations and enables accurate prediction of adenine and hypoxanthine concentrations across a wide range (5 orders of magnitude). Calibrations with purine as an IS outperform those without, exhibiting a 10-fold increase in predictive accuracy. Additionally, the calibration curve obtained from the first batch of SERS substrates remains effective for 64 additional substrates fabricated over a half-year period. Measurements of adenine and hypoxanthine concentrations in bacterial supernatants using SERS with purine IS closely align with the liquid chromatography-mass spectrometry results. The use of purine as an IS offers a simple and robust platform to enhance the speed and accuracy of SERS-AST, while also paving the way for in situ SERS quantification of purine derivatives released by bacteria under various stress conditions.
引用
收藏
页码:16967 / 16975
页数:9
相关论文
共 48 条
[31]   Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis [J].
Murray, Christopher J. L. ;
Ikuta, Kevin Shunji ;
Sharara, Fablina ;
Swetschinski, Lucien ;
Aguilar, Gisela Robles ;
Gray, Authia ;
Han, Chieh ;
Bisignano, Catherine ;
Rao, Puja ;
Wool, Eve ;
Johnson, Sarah C. ;
Browne, Annie J. ;
Chipeta, Michael Give ;
Fell, Frederick ;
Hackett, Sean ;
Haines-Woodhouse, Georgina ;
Hamadani, Bahar H. Kashef ;
Kumaran, Emmanuelle A. P. ;
McManigal, Barney ;
Agarwal, Ramesh ;
Akech, Samuel ;
Albertson, Samuel ;
Amuasi, John ;
Andrews, Jason ;
Aravkin, Aleskandr ;
Ashley, Elizabeth ;
Bailey, Freddie ;
Baker, Stephen ;
Basnyat, Buddha ;
Bekker, Adrie ;
Bender, Rose ;
Bethou, Adhisivam ;
Bielicki, Julia ;
Boonkasidecha, Suppawat ;
Bukosia, James ;
Carvalheiro, Cristina ;
Castaneda-Orjuela, Carlos ;
Chansamouth, Vilada ;
Chaurasia, Suman ;
Chiurchiu, Sara ;
Chowdhury, Fazle ;
Cook, Aislinn J. ;
Cooper, Ben ;
Cressey, Tim R. ;
Criollo-Mora, Elia ;
Cunningham, Matthew ;
Darboe, Saffiatou ;
Day, Nicholas P. J. ;
De Luca, Maia ;
Dokova, Klara .
LANCET, 2022, 399 (10325) :629-655
[32]   Au/SiO2-Nanolaminated Plasmonic Nanoantennas as Refractive-Index-Insensitive and Transparent Surface-Enhanced Raman Spectroscopy Substrates [J].
Nam, Wonil ;
Song, Junyeob ;
Tali, Seied Ali Safiabadi ;
Lezec, Henri J. ;
Agrawal, Amit ;
Zhou, Wei .
ACS APPLIED NANO MATERIALS, 2021, 4 (03) :3175-3184
[33]   Plasmonically Calibrated Label-Free Surface-Enhanced Raman Spectroscopy for Improved Multivariate Analysis of Living Cells in Cancer Subtyping and Drug Testing [J].
Nam, Wonil ;
Ren, Xiang ;
Kim, Inyoung ;
Strobl, Jeannine ;
Agah, Masoud ;
Zhou, Wei .
ANALYTICAL CHEMISTRY, 2021, 93 (10) :4601-4610
[34]   Plasmonic Electronic Raman Scattering as Internal Standard for Spatial and Temporal Calibration in Quantitative Surface-Enhanced Raman Spectroscopy [J].
Nam, Wonil ;
Zhao, Yuming ;
Song, Junyeob ;
Tali, Seied Ali Safiabadi ;
Kang, Seju ;
Zhu, Wenqi ;
Lezec, Henri J. ;
Agrawal, Amit ;
Vikesland, Peter J. ;
Zhou, Wei .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (22) :9543-9551
[35]   The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS [J].
Premasiri, W. Ranjith ;
Lee, Jean C. ;
Sauer-Budge, Alexis ;
Theberge, Roger ;
Costello, Catherine E. ;
Ziegler, Lawrence D. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2016, 408 (17) :4631-4647
[36]   The potential of SERS as an AST methodology in clinical settings [J].
Samek, Ota ;
Bernatova, Silvie ;
Dohnal, Fadi .
NANOPHOTONICS, 2021, 10 (10) :2537-2561
[37]   Quantitative Single-Molecule Surface Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas [J].
Simoncelli, Sabrina ;
Roller, Eva-Maria ;
Urban, Patrick ;
Schreiber, Robert ;
Turberfield, Andrew J. ;
Liedl, Tim ;
Lohmueller, Theobald .
ACS NANO, 2016, 10 (11) :9809-9815
[38]   Scalable High-Performance Nanolaminated SERS Substrates Based on Multistack Vertically Oriented Plasmonic Nanogaps [J].
Song, Junyeob ;
Nam, Wonil ;
Zhou, Wei .
ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (05)
[39]   Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis [J].
Tahir, Muhammad Ali ;
Dina, Nicoleta E. ;
Cheng, Hanyun ;
Valev, Ventsislav K. ;
Zhang, Liwu .
NANOSCALE, 2021, 13 (27) :11593-11634
[40]   Exploring quantification in a mixture using graphene-based surface-enhanced Raman spectroscopy [J].
Tian, Huihui ;
Zhang, Na ;
Zhang, Jin ;
Tong, Lianming .
APPLIED MATERIALS TODAY, 2019, 15 :288-+