Machine Learning Quantification of Intraepithelial Tumor-Infiltrating Lymphocytes as a Significant Prognostic Factor in High-Grade Serous Ovarian Carcinomas

被引:2
|
作者
Machuca-Aguado, Jesus [1 ,2 ]
Conde-Martin, Antonio Felix [1 ,2 ]
Alvarez-Munoz, Alejandro [1 ,2 ]
Rodriguez-Zarco, Enrique [1 ,2 ]
Polo-Velasco, Alfredo [2 ,3 ]
Rueda-Ramos, Antonio [2 ,4 ]
Rendon-Garcia, Rosa [1 ,2 ]
Rios-Martin, Juan Jose [1 ,2 ]
Idoate, Miguel A. [1 ,2 ]
机构
[1] Univ Seville, Virgen Macarena Univ Hosp, Dept Pathol, Seville 41009, Spain
[2] Univ Seville, Sch Med, Seville 41009, Spain
[3] Univ Seville, Virgen Macarena Univ Hosp, Gynecol Dept, Seville 41009, Spain
[4] Univ Seville, Virgen Macarena Univ Hosp, Oncol Dept, Seville 41009, Spain
关键词
ovarian cancer; tumor-infiltrating lymphocytes; digital quantification; algorithms; machine learning; T-CELLS; IMMUNOTHERAPY; PD-1/PD-L1; EXPRESSION; BRCA1; TILS;
D O I
10.3390/ijms242216060
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The prognostic and predictive role of tumor-infiltrating lymphocytes (TILs) has been demonstrated in various neoplasms. The few publications that have addressed this topic in high-grade serous ovarian carcinoma (HGSOC) have approached TIL quantification from a semiquantitative standpoint. Clinical correlation studies, therefore, need to be conducted based on more accurate TIL quantification. We created a machine learning system based on H&E-stained sections using 76 molecularly and clinically well-characterized advanced HGSOC. This system enabled immune cell classification. These immune parameters were subsequently correlated with overall survival (OS) and progression-free survival (PFI). An intense colonization of the tumor cords by TILs was associated with a better prognosis. Moreover, the multivariate analysis showed that the intraephitelial (ie) TILs concentration was an independent and favorable prognostic factor both for OS (p = 0.02) and PFI (p = 0.001). A synergistic effect between complete surgical cytoreduction and high levels of ieTILs was evidenced, both in terms of OS (p = 0.0005) and PFI (p = 0.0008). We consider that digital analysis with machine learning provided a more accurate TIL quantification in HGSOC. It has been demonstrated that ieTILs quantification in H&E-stained slides is an independent prognostic parameter. It is possible that intraepithelial TIL quantification could help identify candidate patients for immunotherapy.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Prognostic and Predictive Role of Tumor-Infiltrating Lymphocytes (TILs) in Ovarian Cancer
    Fanale, Daniele
    Dimino, Alessandra
    Pedone, Erika
    Brando, Chiara
    Corsini, Lidia Rita
    Filorizzo, Clarissa
    Fiorino, Alessia
    Lisanti, Maria Chiara
    Magrin, Luigi
    Randazzo, Ugo
    Russo, Tancredi Didier Bazan
    Russo, Antonio
    Bazan, Viviana
    CANCERS, 2022, 14 (18)
  • [22] PD-L1 expression on stromal tumor-infiltrating lymphocytes is a favorable prognostic factor in ovarian serous carcinoma
    Ki Hyung Kim
    Kyung Un Choi
    Ahrong Kim
    So Jung Lee
    Jung Hee Lee
    Dong Soo Suh
    Byung-su Kwon
    Chungsu Hwang
    Journal of Ovarian Research, 12
  • [23] PD-1/PD-L1 expression and tumor-infiltrating lymphocytes are prognostically favorable in advanced high-grade serous ovarian carcinoma
    Laura Martin de la Fuente
    Sofia Westbom-Fremer
    Nicolai Skovbjerg Arildsen
    Linda Hartman
    Susanne Malander
    Päivi Kannisto
    Anna Måsbäck
    Ingrid Hedenfalk
    Virchows Archiv, 2020, 477 : 83 - 91
  • [24] Prognostic features of the tumor microenvironment in high-grade serous ovarian cancer and dietary immunomodulation
    Mckenzie, Nathalie D.
    Ahmad, Sarfraz
    Awada, Ahmad
    Kuhn, Theresa M.
    Recio, Fernando O.
    Holloway, Robert W.
    LIFE SCIENCES, 2023, 333
  • [25] Tissue factor expression and tumor-infiltrating T lymphocytes in ovarian carcinomas and their association with venous thromboembolism
    Gi, Toshihiro
    Yamashita, Atsushi
    Aman, Murasaki
    Kuwahara, Aya
    Asada, Yujiro
    Kawagoe, Yasuyuki
    Onishi, Junji
    Sameshima, Hiroshi
    Sato, Yuichiro
    PATHOLOGY INTERNATIONAL, 2021, 71 (04) : 261 - 266
  • [26] Prognostic significance of intra-tumoral budding in high-grade serous ovarian carcinomas
    Hachisuga, Toru
    Murakami, Midori
    Harada, Hiroshi
    Ueda, Taeko
    Kurita, Tomoko
    Kagami, Seiji
    Yoshino, Kiyoshi
    Tajiri, Ryosuke
    Hisaoka, Masanori
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [27] Improved Progression-Free Survival Associated with Tumor-Infiltrating Lymphocytes in High-Grade Endometrial Cancer
    Fan, Chun-Ting
    Hsu, Shih-Tien
    Sun, Lou
    Hwang, Sheau-Feng
    Liu, Chih-Ku
    Shih, Yu-Hsiang
    Chen, Ming-Jer
    Li, Hsin-Ni
    Wang, Jun-Sing
    Wen, Mei-Chin
    Lu, Chien-Hsing
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (02)
  • [28] The modularity and dynamicity of miRNA-mRNA interactions in high-grade serous ovarian carcinomas and the prognostic implication
    Zhang, Wensheng
    Edwards, Andrea
    Fan, Wei
    Flemington, Erik K.
    Zhang, Kun
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2016, 63 : 3 - 14
  • [29] Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning
    Klauschen, F.
    Mueller, K. -R.
    Binder, A.
    Bockmayr, M.
    Haegele, M.
    Seegerer, P.
    Wienert, S.
    Pruneri, G.
    de Maria, S.
    Badve, S.
    Michiels, S.
    Nielsen, T. O.
    Adams, S.
    Savas, P.
    Symmans, F.
    Willis, S.
    Gruosso, T.
    Park, M.
    Haibe-Kains, B.
    Gallas, B.
    Thompson, A. M.
    Cree, I.
    Sotiriou, C.
    Solinas, C.
    Preusser, M.
    Hewitt, S. M.
    Rimm, D.
    Viale, G.
    Loi, S.
    Loibl, S.
    Salgado, R.
    Denkert, C.
    SEMINARS IN CANCER BIOLOGY, 2018, 52 : 151 - 157
  • [30] Morphology and tumour-infiltrating lymphocytes in high-stage, high-grade serous ovarian carcinoma correlated with long-term survival
    Darb-Esfahani, Silvia
    Kolaschinski, Ivonne
    Trillsch, Fabian
    Mahner, Sven
    Concin, Nicole
    Vergote, Ignace
    Van Nieuwenhuysen, Els
    Achimas-Cadariu, Patriciu
    Glajzer, Joanna
    Woopen, Hannah
    Wienert, Stefan
    Taube, Eliane T.
    Stanske, Mandy
    Kulbe, Hagen
    Denkert, Carsten
    Sehouli, Jalid
    Braicu, Elena I.
    HISTOPATHOLOGY, 2018, 73 (06) : 1002 - 1012