Few-shot HPC application runtime prediction

被引:0
作者
Chen, Si [1 ]
Garcia De Gonzalo, Simon [2 ]
Wildani, Avani [1 ]
机构
[1] Emory Univ, Atlanta, GA 30322 USA
[2] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
来源
2023 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING WORKSHOPS, CLUSTER WORKSHOPS | 2023年
关键词
Meta-Learning; HPC Performance analysis; simulation system;
D O I
10.1109/CLUSTERWorkshops61457.2023.00018
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Precise runtime prediction for HPC jobs is essential for streamlined hardware/software co-design, resource allocation, and assessing the impact of hardware alterations. Existing runtime prediction methods, however, are generally application and architecture-specific, hindering their broad applicability. In response, we propose a novel meta-learning and simulation-based model that accommodates a wide range of applications and architectures. This method efficiently addresses new runtime challenges using only a limited number of samples. As demonstrated by our experiments, with just ten training samples, this model attains an average MAPE of 19% on the SPEC CPU 2006 benchmarks.
引用
收藏
页码:46 / 47
页数:2
相关论文
共 50 条
[21]   Are LSTMs good few-shot learners? [J].
Mike Huisman ;
Thomas M. Moerland ;
Aske Plaat ;
Jan N. van Rijn .
Machine Learning, 2023, 112 :4635-4662
[22]   Prototype Reinforcement for Few-Shot Learning [J].
Xu, Liheng ;
Xie, Qian ;
Jiang, Baoqing ;
Zhang, Jiashuo .
2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, :4912-4916
[23]   Secure collaborative few-shot learning [J].
Xie, Yu ;
Wang, Han ;
Yu, Bin ;
Zhang, Chen .
KNOWLEDGE-BASED SYSTEMS, 2020, 203
[24]   Few-shot anime pose transfer [J].
Wang, Pengjie ;
Yang, Kang ;
Yuan, Chengzhi ;
Li, Houjie ;
Tang, Wen ;
Yang, Xiaosong .
VISUAL COMPUTER, 2024, 40 (07) :4635-4646
[25]   An Applicative Survey on Few-shot Learning [J].
Zhang J. ;
Zhang X. ;
Lv L. ;
Di Y. ;
Chen W. .
Recent Patents on Engineering, 2022, 16 (05) :104-124
[26]   Property-Aware Relation Networks for Few-Shot Molecular Property Prediction [J].
Yao, Quanming ;
Shen, Zhenqian ;
Wang, Yaqing ;
Dou, Dejing .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (08) :5413-5429
[27]   Few-shot link prediction with meta-learning for temporal knowledge graphs [J].
Zhu, Lin ;
Xing, Yizong ;
Bai, Luyi ;
Chen, Xiwen .
JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2023, 10 (02) :711-721
[28]   Few-Shot Prediction of Landslide Susceptibility Based on Meta-Learning Paradigm [J].
Chen, Li ;
Ding, Yulin ;
Zhu, Qing ;
Zeng, Haowei ;
Zhang, Liguo ;
Liu, Fei .
Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (08) :1367-1376
[29]   Attribute-guided prototype network for few-shot molecular property prediction [J].
Hou, Linlin ;
Xiang, Hongxin ;
Zeng, Xiangxiang ;
Cao, Dongsheng ;
Zeng, Li ;
Song, Bosheng .
BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
[30]   Generalizing from a Few Examples: A Survey on Few-shot Learning [J].
Wang, Yaqing ;
Yao, Quanming ;
Kwok, James T. ;
Ni, Lionel M. .
ACM COMPUTING SURVEYS, 2020, 53 (03)