AN UNSUPERVISED SIAMESE SUPERPIXEL-BASED NETWORK FOR CHANGE DETECTION IN HETEROGENEOUS REMOTE SENSING IMAGES

被引:2
作者
Ji, Zhiyuan [1 ]
Wang, Xueqian [1 ]
Wang, Zhihao [1 ]
Li, Gang [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Unsupervised change detection; superpixel segmentation; neural network; remote sensing; heterogeneous images; CLASSIFICATION; SAR;
D O I
10.1109/IGARSS52108.2023.10283145
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we consider the problem of change detection in heterogeneous remote sensing images. Existing deep learning-based methods for change detection often utilize square convolution receptive fields, which do not sufficiently exploit the contextual information in heterogeneous images. Square receptive fields reduce the robustness to change detection scenarios with complex contextual structures, increase the number of false alarms, and degrade the performance of change detection. To address the aforementioned issue, we propose an unsupervised Siamese superpixel-based network ((USN)-N-2) for change detection in heterogeneous remote sensing images. Our newly proposed method innovatively combines superpixels with the square receptive fields to generate the boundary adherence receptive fields and better capture the contextual information than existing methods only with the regular square receptive fields. Experiments based on two real data sets demonstrate that the proposed method achieves higher accuracy than other commonly used change detection methods in heterogeneous remote sensing images.
引用
收藏
页码:5451 / 5454
页数:4
相关论文
共 16 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   Earthquake Damage Assessment of Buildings Using VHR Optical and SAR Imagery [J].
Brunner, Dominik ;
Lemoine, Guido ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (05) :2403-2420
[3]   A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images [J].
Liu, Jia ;
Gong, Maoguo ;
Qin, Kai ;
Zhang, Puzhao .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (03) :545-559
[4]  
Jiang X, 2022, IEEE T GEOSCI REMOTE, V60, DOI [10.1109/TGRS.2021.3061686, 10.1109/TGRS.2022.3173172]
[5]  
Jianya G., 2008, Protein Expr. Purif., V37-B7, P757
[6]   Change Detection in Heterogenous Remote Sensing Images via Homogeneous Pixel Transformation [J].
Liu, Zhunga ;
Li, Gang ;
Mercier, Gregoire ;
He, You ;
Pan, Quan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) :1822-1834
[7]   Simple Multiscale UNet for Change Detection With Heterogeneous Remote Sensing Images [J].
Lv, Zhiyong ;
Huang, Haitao ;
Gao, Lipeng ;
Benediktsson, Jon Atli ;
Zhao, Minghua ;
Shi, Cheng .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[8]   Conditional copulas for change detection in heterogeneous remote sensing images [J].
Mercier, Gregoire ;
Moser, Gabriele ;
Serpico, Sebastiano B. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (05) :1428-1441
[9]   Decameter Cropland LAI/FPAR Estimation From Sentinel-2 Imagery Using Google Earth Engine [J].
Sun, Yuanheng ;
Qin, Qiming ;
Ren, Huazhong ;
Zhang, Yao .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[10]   Iterative Robust Graph for Unsupervised Change Detection of Heterogeneous Remote Sensing Images [J].
Sun, Yuli ;
Lei, Lin ;
Guan, Dongdong ;
Kuang, Gangyao .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :6277-6291