CERTAIN PROPERTIES OF THE CLASS OF UNIVALENT FUNCTIONS WITH REAL COEFFICIENTS

被引:0
作者
Obradovic, Milutin [1 ]
Tuneski, Nikola [2 ]
机构
[1] Univ Belgrade, Fac Civil Engn, Dept Math, Bulevar Kralja Aleksandra 73, Belgrade 11000, Serbia
[2] Ss Cyril & Methodius Univ Skopje, Fac Mech Engn, Dept Math & Informat, Karpos II b b, Skopje 1000, North Macedonia
关键词
Univalent; real coefficients; logarithmic coefficients; coefficient estimates; Hankel determinant; Zalcman conjecture; HANKEL DETERMINANT; 3RD KIND; STARLIKE;
D O I
10.4134/BKMS.b220643
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U+ be the class of analytic functions f such that z / f(z) has real and positive coefficients and f(-1) be its inverse. In this paper we give sharp estimates of the initial coefficients and initial logarithmic coefficients for f, as well as, sharp estimates of the second and the third Hankel determinant for f and f(-1). We also show that the Zalcman conjecture holds for functions f from U+.
引用
收藏
页码:1253 / 1263
页数:11
相关论文
共 21 条
[11]   Generalized Zalcman conjecture for starlike and typically real functions [J].
Ma, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 234 (01) :328-339
[12]  
OBRADOVI M., 2019, Ann. Univ. Mariae CurieSk lodowska, Sect. A, V73, P49
[13]   Coefficient characterization for certain classes of univalent functions [J].
Obradovic, M. ;
Ponnusamy, S. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (02) :251-263
[14]  
Obradovic M., 2022, Novi Sad J. Math., V52, P173
[15]  
Obradovic M., 2005, Ann. Polon. Math., V86, P1, DOI [10.4064/ap86-1-1, DOI 10.4064/AP86-1-1]
[16]  
Obradovic M, 2022, J ANAL-INDIA, V30, P399, DOI 10.1007/s41478-021-00326-5
[17]   A Class of Univalent Functions with Real Coefficients [J].
Obradovic, Milutin ;
Tuneski, Nikola .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) :2875-2886
[18]  
Obradovic M, 2016, B MALAYS MATH SCI SO, V39, P1259, DOI 10.1007/s40840-015-0263-5
[19]  
Thomas D.K., 2018, De Gruyter Studies in Mathematics, V69, DOI [10.1515/9783110560961, DOI 10.1515/9783110560961]
[20]  
Vasudevarao A, 2013, COMPUT METH FUNCT TH, V13, P613, DOI 10.1007/s40315-013-0045-8