Dispersion characteristics and mechanical properties of epoxy nanocomposites reinforced with carboxymethyl cellulose functionalized nanodiamond, carbon nanotube, and graphene

被引:8
|
作者
Zhang, Dawei [1 ]
Huang, Ying [1 ]
Xia, Wenjie [2 ]
Xu, Luyang [1 ]
Wang, Xingyu [1 ,3 ]
机构
[1] North Dakota State Univ, Dept Civil Construct & Environm Engn, Fargo, ND USA
[2] Iowa State Univ, Dept Aerosp Engn, Ames, IA USA
[3] North Dakota State Univ, Dept Civil Construct & Environm Engn, CIE204,1340 Adm Ave, Fargo, ND 58108 USA
基金
美国国家科学基金会;
关键词
electron microscopy; mechanical properties; nanocomposites; particle size distribution; surfactants; RAMAN-SPECTROSCOPY; PERFORMANCE; NANOPLATELETS; SENSITIVITY; COMPOSITES;
D O I
10.1002/pc.27785
中图分类号
TB33 [复合材料];
学科分类号
摘要
Carbon-based nanoparticles are widely regarded as promising nanofillers in nanocomposites to pursue advanced properties. To date, there has been a lack of systematic investigation into the structural variations of nanofillers and their influences on dispersion characteristics, as well as the resulting mechanical properties of nanocomposites. In this study, nanodiamond (ND), carbon nanotube (CNT), and graphene (GNP) were selected as the representative zero-, one-, and two-dimensional nanofillers, respectively. A novel functionalization technique utilizing carboxymethyl cellulose (CMC) was employed to disperse nanofillers. The various characterization techniques and experimental results revealed that CMC functionalization was effective in reducing the agglomeration and improving the distribution uniformity of all three nanofillers. Among the three nanofillers, zero-dimensional ND exhibited the most homogeneous dispersion quality in epoxy nanocomposites. The strongest abrasion resistance was found in ND-reinforced epoxy nanocomposites, while CNT-reinforced epoxy nanocomposites exhibited the best tensile properties.HighlightsNanodiamond with a spherical structure had better dispersion characteristics.Cylindrical carbon nanotube and planar graphene tended to agglomerate.Nanodiamond reinforced nanocomposites had better abrasion resistance.Carbon nanotube reinforced nanocomposites had better tensile properties.Carboxymethyl cellulose functionalization was valid for all three nanofillers. Treatment procedures of the CMC funtionalization on the three carbonbased nanoparticles and their dispersion charateristics.image
引用
收藏
页码:398 / 412
页数:15
相关论文
共 50 条
  • [41] Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites
    Yadav, Santosh Kumar
    Cho, Jae Whan
    APPLIED SURFACE SCIENCE, 2013, 266 : 360 - 367
  • [42] Effects of Carbon Nanotube Dispersion Methods on the Radar Absorbing Properties of MWCNT/Epoxy Nanocomposites
    Bien Dong Che
    Nguyen, Le-Thu T.
    Bao Quoc Nguyen
    Ha Tran Nguyen
    Thang Van Le
    Nieu Huu Nguyen
    MACROMOLECULAR RESEARCH, 2014, 22 (11) : 1221 - 1228
  • [43] Effect of Fluorination on Thermal and Mechanical Properties of Carbon Nanotube and Graphene Nanoplatelet Reinforced Epoxy Composites
    Lee, Kyeong Min
    Lee, Si-Eun
    Lee, Young-Seak
    POLYMER-KOREA, 2016, 40 (04) : 553 - 560
  • [44] Epoxy Nanocomposites Reinforced with Functionalized Carbon Nanotubes
    Mostovoy, Anton
    Yakovlev, Andrey
    Tseluikin, Vitaly
    Lopukhova, Marina
    POLYMERS, 2020, 12 (08)
  • [45] Multiscale Modeling of Dynamic Characteristics of Carbon Nanotube Reinforced Nanocomposites
    Gajbhiye, Sachin O.
    Singh, S. P.
    NANO, 2016, 11 (07)
  • [46] Assessment of carbon nanotube dispersion and mechanical property of epoxy nanocomposites by curing reaction heat measurement
    Kim, Sihwan
    Lee, Woo I.
    Park, Chung H.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2016, 35 (01) : 71 - 80
  • [47] Effect of adsorption, hardener, and temperature on mechanical properties of epoxy nanocomposites with functionalized graphene: A molecular dynamics study
    Salehi, Arman
    Rash-Ahmadi, Samrand
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2022, 117
  • [48] Graphene Nanoplatelets in Epoxy System: Dispersion, Reaggregation, and Mechanical Properties of Nanocomposites
    Wei, Jiacheng
    Atif, Rasheed
    Vo, Thuc
    Inam, Fawad
    JOURNAL OF NANOMATERIALS, 2015, 2015
  • [49] Mechanical and electrical properties of carbon nanotube buckypaper reinforced silicon carbide nanocomposites
    Cai, Yanzhi
    Chen, Lingqi
    Yang, Hongjiang
    Gou, Jihua
    Cheng, Laifei
    Yin, Xiaowei
    Yin, Hongfeng
    CERAMICS INTERNATIONAL, 2016, 42 (04) : 4984 - 4992
  • [50] Mechanical and Thermal Properties of Epoxy Resin Nanocomposites Reinforced with Graphene Oxide
    Liu, Qinghong
    Zhou, Xufeng
    Fan, Xinyu
    Zhu, Chunyang
    Yao, Xiayin
    Liu, Zhaoping
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2012, 51 (03) : 251 - 256