Structure of amino acid sequence-reversed wtRop protei: insights from atomistic molecular dynamics simulations

被引:1
|
作者
Arnittali, Maria [1 ,2 ,3 ]
Rissanou, Anastassia N. [4 ]
Kefala, Aikaterini [5 ,6 ]
Kokkinidis, Michael [5 ,6 ]
Harmandaris, Vagelis [1 ,2 ,3 ]
机构
[1] Cyprus Inst, Computat Based Sci & Technol Res Ctr, Nicosia, Cyprus
[2] Inst Appl & Computat Math, Fdn Res & Technol Hellas FORTH, Iraklion, Greece
[3] Univ Crete, Dept Math & Appl Math, Iraklion, Greece
[4] Theoret & Phys Chem Inst, Natl Hellen Res Fdn, Athens, Greece
[5] Inst Mol Biol & Biotechnol, Fdn Res & Technol FORTH, Iraklion, Greece
[6] Univ Crete, Dept Biol, Iraklion, Greece
来源
关键词
Retro proteins; amino acid sequence; heptad pattern; protein folding; molecular dynamics; secondary structure; FREE-ENERGY LANDSCAPE; SECONDARY STRUCTURE; COILED-COILS; ROP; STABILITY; SPECIFICITY; GROMACS; PACKING; HELICES; MODEL;
D O I
10.1080/07391102.2023.2252903
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study aims to the investigation of the advantages of designing new proteins presume upon a 'bias' sequence of amino acids, based on the reversed sequence of parent proteins, such as the retro ones. The structural simplicity of wtRop offers a very attractive model system to study these aspects. The current work is based on all-atom Molecular Dynamics (MD) simulations and corresponding experimental evidence on two different types of reversed wtRop protein, one with a fully reversed sequence of amino acids (rRop) and another with a partially reversed sequence (prRop), where only the five residues of the loop region (30ASP-34GLN) were not reversed. The exploration of the structure of the two retro proteins is performed highlighting the similarities and the differences with their parent protein, by employing various measures. Two models have been studied for both reversed proteins, a dimeric and a monomeric with the former one found to be more stable than the latter. Preferable equilibrium structures that the protein molecule can attain are explored, indicating the equilibration pathway. Simulation findings indicate a disruption of the alpha-helical structure and the appearance of additional secondary structures for both retro proteins. Reduced structural stability compared to their parent protein (wtRop) is also found. A corruption of the hydrophobic core is observed in the dimeric models. Furthermore, the simulations findings are consistent with the experimental characterization of prRop by circular dichroism spectroscopy (CD) which highlights an unstable, highly alpha-helical protein.
引用
收藏
页码:9842 / 9856
页数:15
相关论文
共 50 条
  • [1] Insights into the molecular mechanism of complex I from atomistic molecular dynamics simulations
    Sharma, V.
    Kaila, V. R. I.
    Wikstrom, M.
    Vattulainen, I.
    Rog, T.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S91 - S91
  • [2] Molecular dynamics simulations of the minor ampullate spidroin modular amino acid sequence from Parawixia bistriatra: insights into silk tertiary structure and fibre formation
    Murad, Andre M.
    Rech, Elibio L.
    JOURNAL OF MOLECULAR MODELING, 2011, 17 (05) : 1183 - 1189
  • [3] Molecular dynamics simulations of the minor ampullate spidroin modular amino acid sequence from Parawixia bistriatra: insights into silk tertiary structure and fibre formation
    André M. Murad
    Elíbio L. Rech
    Journal of Molecular Modeling, 2011, 17 : 1183 - 1189
  • [4] Atomistic Details of Peptide Reversed-Phase Liquid Chromatography from Molecular Dynamics Simulations
    Scrosati, Pablo M.
    Konermann, Lars
    ANALYTICAL CHEMISTRY, 2023, 95 (07) : 3892 - 3900
  • [5] Amino-acid solvation structure in transmembrane helices from molecular dynamics simulations
    Johansson, Anna C. V.
    Lindahl, Erik
    BIOPHYSICAL JOURNAL, 2006, 91 (12) : 4450 - 4463
  • [6] Insights from molecular dynamics simulations into the structure and dynamics of ITPA mutants
    Houndonougbo, Yao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [7] Atomistic structure of amorphous silicon nitride from classical molecular dynamics simulations
    Ippolito, Mariella
    Meloni, Simone
    PHYSICAL REVIEW B, 2011, 83 (16)
  • [8] Impact of Charged Surfaces on the Structure and Dynamics of Polymer Electrolytes: Insights from Atomistic Simulations
    Thum, Andreas
    Diddens, Diddo
    Heuer, Andreas
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (46): : 25392 - 25403
  • [9] Molecular Insights into the Misfolding and Dimerization Dynamics of the Full-Length ?-Synuclein from Atomistic Discrete Molecular Dynamics Simulations
    Zhang, Yu
    Wang, Ying
    Liu, Yuying
    Wei, Guanghong
    Ding, Feng
    Sun, Yunxiang
    ACS CHEMICAL NEUROSCIENCE, 2022, : 3126 - 3137
  • [10] How the protonation state of a phosphorylated amino acid governs molecular recognition: insights from classical molecular dynamics simulations
    Kawade, Raiji
    Kuroda, Daisuke
    Tsumoto, Kouhei
    FEBS LETTERS, 2020, 594 (05) : 903 - 912