Risk budgeting portfolios from simulations

被引:4
作者
da Costa, Freitas Paulo [1 ,3 ]
Pesenti, Silvana M. [2 ]
Targino, Rodrigo S. [3 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Math, Rio de Janeiro, Brazil
[2] Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
[3] Getulio Vargas Fdn, Sch Appl Math, Rio De Janeiro, Brazil
基金
加拿大自然科学与工程研究理事会;
关键词
Portfolio optimisation; Risk parity; Coherent risk measures; Stochastic optimisation; CONDITIONAL VALUE; ASSET ALLOCATION; PARITY; IMPLEMENTATION; OPTIMIZATION; ALGORITHM;
D O I
10.1016/j.ejor.2023.06.003
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Risk budgeting is a portfolio strategy where each asset contributes a prespecified amount to the aggregate risk of the portfolio. In this work, we propose an efficient numerical framework that uses only simulations of returns for estimating risk budgeting portfolios. Besides a general cutting planes algorithm for determining the weights of risk budgeting portfolios for arbitrary coherent distortion risk measures, we provide a specialised version for the Expected Shortfall, and a tailored Stochastic Gradient Descent (SGD) algorithm, also for the Expected Shortfall. We compare our algorithm to standard convex optimisation solvers and illustrate different risk budgeting portfolios, constructed using an especially designed Julia package, on real financial data and compare it to classical portfolio strategies. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:1040 / 1056
页数:17
相关论文
共 55 条
[21]   SCRIP: Successive Convex Optimization Methods for Risk Parity Portfolio Design [J].
Feng, Yiyong ;
Palomar, Daniel P. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (19) :5285-5300
[22]  
Ghalanos A, 2019, rmgarch: Multivariate GARCH Models
[23]   ON THE RELATION BETWEEN THE EXPECTED VALUE AND THE VOLATILITY OF THE NOMINAL EXCESS RETURN ON STOCKS [J].
GLOSTEN, LR ;
JAGANNATHAN, R ;
RUNKLE, DE .
JOURNAL OF FINANCE, 1993, 48 (05) :1779-1801
[25]  
Griveau-Billion T., 2013, FAST ALGORITHM COMPU
[26]   Simulating Sensitivities of Conditional Value at Risk [J].
Hong, L. Jeff ;
Liu, Guangwu .
MANAGEMENT SCIENCE, 2009, 55 (02) :281-293
[27]   Expected Shortfall Asset Allocation: A Multi-Dimensiona Risk-Budgeting Framework [J].
Jurczenko, Emmanuel ;
Teiletche, Jerome .
JOURNAL OF ALTERNATIVE INVESTMENTS, 2019, 22 (02) :7-22
[28]   THE CUTTING-PLANE METHOD FOR SOLVING CONVEX PROGRAMS [J].
KELLEY, JE .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1960, 8 (04) :703-712
[29]   Higher moment coherent risk measures [J].
Krokhmal, Pavlo A. .
QUANTITATIVE FINANCE, 2007, 7 (04) :373-387
[30]   Numerical implementation of the QuEST function [J].
Ledoit, Olivier ;
Wolf, Michael .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 115 :199-223