Weyl's Law for the Steklov Problem on Surfaces with Rough Boundary

被引:3
作者
Karpukhin, Mikhail [1 ]
Lagace, Jean [2 ]
Polterovich, Iosif [3 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
[3] Univ Montreal, Dept Math & Stat, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
ASYMPTOTIC-BEHAVIOR; DOMAINS; EIGENVALUES; LAPLACIAN; FORMULA;
D O I
10.1007/s00205-023-01912-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The validity of Weyl's law for the Steklov problem on domains with Lipschitz boundary is a well-known open question in spectral geometry. We answer this question in two dimensions and show that Weyl's law holds for an even larger class of surfaces with rough boundaries. This class includes domains with interior cusps as well as "slow" exterior cusps. Moreover, the condition on the speed of exterior cusps cannot be improved, which makes our result, in a sense optimal. The proof is based on the methods of Suslina and Agranovich combined with some observations about the boundary behaviour of conformal mappings.
引用
收藏
页数:20
相关论文
共 26 条
  • [1] On the Behavior of the Spectrum of a Perturbed Steklov Boundary Value Problem with a Weak Singularity
    Chechkina, A. G.
    DIFFERENTIAL EQUATIONS, 2021, 57 (10) : 1382 - 1395
  • [2] An optimization problem for nonlinear Steklov eigenvalues with a boundary potential
    Fernandez Bonder, Julian
    Giubergia, Graciela O.
    Mazzone, Fernando D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (01) : 234 - 243
  • [3] Convergence of eigenelements in a Steklov type boundary value problem for the Lame operator
    Davletov, D. B.
    Davletov, O. B.
    Davletova, R. R.
    Ershov, A. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2021, 27 (01): : 37 - 47
  • [4] Operator estimates for elliptic problem with rapidly alternating Steklov boundary condition
    Chechkina, Aleksandra G.
    D'Apice, Ciro
    De Maio, Umberto
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376
  • [5] EXISTENCE AND HOMOGENIZATION FOR A SINGULAR PROBLEM THROUGH ROUGH SURFACES
    Donato, Patrizia
    Giachetti, Daniela
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (06) : 4047 - 4086
  • [6] EIGENVALUES OF THE NEUMANN-POINCARE OPERATOR IN DIMENSION 3: WEYL'S LAW AND GEOMETRY
    Miyanishi, Y.
    Rozenblum, G.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2020, 31 (02) : 371 - 386
  • [7] A short proof of Weyl's law for fractional differential operators
    Geisinger, Leander
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (01)
  • [8] On eigenelements of a two-dimensional Steklov-type boundary value problem for the Lame oper- ator
    Davletov, D. B.
    Davletov, O. B.
    Davletova, R. R.
    Ershov, A. A.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2023, 33 (01): : 54 - 65
  • [9] SIGN CHANGES OF THE ERROR TERM IN WEYL'S LAW FOR HEISENBERG MANIFOLDS
    Tsang, Kai-Man
    Zhai, Wenguang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) : 2647 - 2666
  • [10] ON BERNOULLI'S FREE BOUNDARY PROBLEM WITH A RANDOM BOUNDARY
    Dambrine, M.
    Harbrecht, H.
    Peters, M. D.
    Puig, B.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2017, 7 (04) : 335 - 353