Applicability of natural geological objects for storage, disposal and utilization of carbon dioxide (review)

被引:0
作者
Korzun, A. V. [1 ]
Stoupakova, A. V. [1 ]
Kharitonova, N. A. [1 ]
Pronina, N. V. [1 ]
Makarova, E. Yu. [1 ]
Vaitekhovich, A. P. [1 ]
Osipov, K. O. [1 ]
Lopatin, A. Yu. [1 ]
Aseeva, A. V. [2 ]
Karpushin, M. Yu. [1 ]
Sautkin, R. S. [1 ]
Peregudov, Yu. D. [1 ]
Bolshakova, M. A. [1 ]
Sitar, K. A. [1 ]
Redkin, A. S. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow, Russia
[2] Russian Acad Sci, Far East Geol Inst, Far East Branch, Vladivostok, Russia
关键词
decarbonatization; natural reservoirs; carbon dioxide; capture; burial; storage; utilization; reservoir; aquifer; coal bed; basalt; underground gas storage; CO2; SEQUESTRATION; HYDROGEN STORAGE; SALT CAVERNS; GAS; TEMPERATURE; ADSORPTION; INJECTION;
D O I
10.18599/grs.2023.2.2
中图分类号
TE [石油、天然气工业];
学科分类号
0820 ;
摘要
In the context of the current trend, today we are focused on low-carbon energy, so the question of carbon dioxide utilization is very important. Underground storage of carbon dioxide is an important part of carbon capture and storage (CCS) projects and a key technology to reduce emissions of carbon dioxide to the atmosphere. There are currently many carbon dioxide capture projects around the world, but each project has its own specifics. The article discusses the features of carbon dioxide capture in natural geological reservoirs and the principles of carbon dioxide retention in them. An example of some Carbon Capture in a natural geological reservoirs projects are given. The choice of a natural reservoir, the development of a technology for its identification and justification criteria are of key importance for the environmentally sustainable capture of carbon dioxide.
引用
收藏
页码:22 / 35
页数:14
相关论文
共 60 条
  • [1] CO2 sequestration in basaltic rock at the Hellisheidi site in SW Iceland:: stratigraphy and chemical composition of the rocks at the injection site
    Alfredsson, H. A.
    Hardarson, B. S.
    Franzson, H.
    Gislason, S. R.
    [J]. MINERALOGICAL MAGAZINE, 2008, 72 (01) : 1 - 5
  • [2] [Anonymous], 2023, 279142023 GOST R ISO
  • [3] CO2 storage capacity estimation:: Methodology and gaps
    Bachu, Stefan
    Bonijoly, Didier
    Bradshaw, John
    Burruss, Robert
    Holloway, Sam
    Christensen, Niels Peter
    Mathiassen, Odd Magne
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2007, 1 (04) : 430 - 443
  • [4] Baklid A., 1996, SPE ANN TECHNICAL C, DOI [DOI 10.2118/36600-MS, 10.2118/36600-MS., 10.2118/36600-MS]
  • [5] Brouard B., 2019, Phase 2 Cavern-Scale Report
  • [6] Technical potential of salt caverns for hydrogen storage in Europe
    Caglayan, Dilara Gulcin
    Weber, Nikolaus
    Heinrichs, Heidi U.
    Linssen, Jochen
    Robinius, Martin
    Kukla, Peter A.
    Stolten, Detlef
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (11) : 6793 - 6805
  • [7] Potential of storing gas with high CO2 content in salt caverns built in ultra-deep water in Brazil
    da Costa, Alvaro Maia
    da Costa, Pedro V. M.
    Udebhulu, Okhiria D.
    Azevedo, Ricardo Cabral
    Ebecken, Nelson F. F.
    Miranda, Antonio C. O.
    de Eston, Sergio M.
    de Tomi, Giorgio
    Meneghini, Julio R.
    Nishimoto, Kazuo
    Ruggiere, Felipe
    Malta, Edgard
    Rocha Fernandes, Mauro Elis
    Brandao, Camila
    Breda, Alexandre
    [J]. GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2019, 9 (01) : 79 - 94
  • [8] Influence of amorphous silica layer formation on the dissolution rate of olivine at 90 °C and elevated pCO2
    Daval, Damien
    Sissmann, Olivier
    Menguy, Nicolas
    Saldi, Giuseppe D.
    Guyot, Francois
    Martinez, Isabelle
    Corvisier, Jerome
    Garcia, Bruno
    Machouk, Imene
    Knauss, Kevin G.
    Hellmann, Roland
    [J]. CHEMICAL GEOLOGY, 2011, 284 (1-2) : 193 - 209
  • [9] DeVries KL, 2005, Cavern roof stability for natural gas storage in bedded salt
  • [10] Donadei S., 2020, SOLUTION MINING RES, P1