Explainable Transfer Learning-Based Deep Learning Model for Pelvis Fracture Detection

被引:38
作者
Kassem, Mohamed A. A. [1 ]
Naguib, Soaad M. M. [2 ]
Hamza, Hanaa M. M. [3 ]
Fouda, Mostafa M. M. [4 ]
Saleh, Mohamed K. K. [5 ]
Hosny, Khalid M. M. [3 ]
机构
[1] Kafrelsheikh Univ, Fac Artificial Intelligence, Dept Robot & Intelligent Machines, Kafr Al Sheikh 33516, Egypt
[2] Zagazig Univ, Fac Comp & Informat, Dept Informat Syst, Zagazig 44519, Egypt
[3] Zagazig Univ, Fac Comp & Informat, Dept Informat Technol, Zagazig 44519, Egypt
[4] Idaho State Univ, Dept Elect & Comp Engn, Pocatello, ID USA
[5] Zagazig Univ, Fac Med, Dept Orthoped Surg, Zagazig 44519, Egypt
关键词
CLASSIFICATION; MANAGEMENT;
D O I
10.1155/2023/3281998
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pelvis fracture detection is vital for diagnosing patients and making treatment decisions for traumatic pelvis injuries. Computer-aided diagnostic approaches have recently become popular for assisting doctors in disease diagnosis, making their conclusions more trustworthy and error-free. Inspecting X-ray images with fractures needs a lot of time from experienced physicians. However, there is a lack of inexperienced radiologists in many hospitals to deal with these images. Therefore, this study presents an accurate computer-aided-diagnosing system based on deep learning for detecting pelvis fractures. In this research, we construct an explainable artificial intelligence (XAI) framework for pelvis fracture classification. We used a dataset containing 876 X-ray images (472 pelvis fractures and 404 normal images) to train the model. The obtained results are 98.5%, 98.5%, 98.5%, and 98.5% for accuracy, sensitivity, specificity, and precision.
引用
收藏
页数:10
相关论文
共 33 条
  • [1] A comprehensive survey of deep learning research on medical image analysis with focus on transfer learning
    Atasever, Sema
    Azginoglu, Nuh
    Terzi, Duygu Sinanc
    Terzi, Ramazan
    [J]. CLINICAL IMAGING, 2023, 94 : 18 - 41
  • [2] Choi S. B., 2009, ROSENS EMERGENCY MED, V7th
  • [3] Xception: Deep Learning with Depthwise Separable Convolutions
    Chollet, Francois
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1800 - 1807
  • [4] Pelvic trauma: WSES classification and guidelines
    Coccolini, Federico
    Stahel, Philip F.
    Montori, Giulia
    Biffl, Walter
    Horer, Tal M.
    Catena, Fausto
    Kluger, Yoram
    Moore, Ernest E.
    Peitzman, Andrew B.
    Ivatury, Rao
    Coimbra, Raul
    Fraga, Gustavo Pereira
    Pereira, Bruno
    Rizoli, Sandro
    Kirkpatrick, Andrew
    Leppaniemi, Ari
    Manfredi, Roberto
    Magnone, Stefano
    Chiara, Osvaldo
    Solaini, Leonardo
    Ceresoli, Marco
    Allievi, Niccolo
    Arvieux, Catherine
    Velmahos, George
    Balogh, Zsolt
    Naidoo, Noel
    Weber, Dieter
    Abu-Zidan, Fikri
    Sartelli, Massimo
    Ansaloni, Luca
    [J]. WORLD JOURNAL OF EMERGENCY SURGERY, 2017, 12
  • [5] Postmortem radiological case series of acetabular fractures after fatal aviation accidents
    de Bakker, Henri M.
    Tijsterman, Melanie
    Kubat, Bela
    Soerdjbalie-Maikoe, Vidija
    van Rijn, Rick R.
    de Bakker, Bernadette S.
    [J]. FORENSIC SCIENCE MEDICINE AND PATHOLOGY, 2018, 14 (01) : 62 - 69
  • [6] DeSilva JM, 2017, ANAT REC, V300, P628, DOI [10.1002/ar.23561, 10.1002/ar.23573]
  • [7] Evaluation of penetrating abdominal and pelvic trauma
    Durso, Anthony M.
    Paes, Fabio M.
    Caban, Kim
    Danton, Gary
    Braga, Thiago A.
    Sanchez, Allen
    Munera, Felipe
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2020, 130
  • [8] An introduction to ROC analysis
    Fawcett, Tom
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (08) : 861 - 874
  • [9] Gillen G., 2016, Stroke Rehabilitation, VFourth, P360
  • [10] Pelvic Fracture Care
    Gordon, Wade T.
    Fleming, Mark E.
    Johnson, Anthony E.
    Gurney, Jennifer
    Shackelford, Col Stacy
    Stockinger, Zsolt T.
    [J]. MILITARY MEDICINE, 2018, 183 : 115 - 117