Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry

被引:95
作者
Lee, Seunghoon [1 ]
Lee, Joonho [2 ]
Zhai, Huanchen [1 ]
Tong, Yu [3 ]
Dalzell, Alexander M. [4 ]
Kumar, Ashutosh [5 ,6 ]
Helms, Phillip [1 ]
Gray, Johnnie [1 ]
Cui, Zhi-Hao [1 ]
Liu, Wenyuan [1 ]
Kastoryano, Michael [4 ,7 ]
Babbush, Ryan [8 ]
Preskill, John [4 ,9 ]
Reichman, David R. [2 ]
Campbell, Earl T. [10 ]
Valeev, Edward F. [5 ]
Lin, Lin [3 ,11 ]
Chan, Garnet Kin-Lic [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[2] Columbia Univ, Dept Chem, New York, NY 10027 USA
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[4] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
[5] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA
[6] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[7] Amazon Quantum Solut Lab, Seattle, WA 98170 USA
[8] Google Quantum AI, 340 Main St, Venice, CA 90291 USA
[9] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[10] Riverlane, Cambridge, England
[11] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
MATRIX RENORMALIZATION-GROUP; ELECTRONIC-STRUCTURE; CLUSTERS; IRON; COMPUTATION; ENERGY; ORDER;
D O I
10.1038/s41467-023-37587-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The extent of problems in quantum chemistry for which quantum algorithms could provide a speedup is still unclear, as well as the kind of speedup one should expect. Here, the authors look at the problem of ground state energy estimation, and gather theoretical and numerical evidence for the fact that an exponential quantum advantage is unlikely for generic problems of interest. Due to intense interest in the potential applications of quantum computing, it is critical to understand the basis for potential exponential quantum advantage in quantum chemistry. Here we gather the evidence for this case in the most common task in quantum chemistry, namely, ground-state energy estimation, for generic chemical problems where heuristic quantum state preparation might be assumed to be efficient. The availability of exponential quantum advantage then centers on whether features of the physical problem that enable efficient heuristic quantum state preparation also enable efficient solution by classical heuristics. Through numerical studies of quantum state preparation and empirical complexity analysis (including the error scaling) of classical heuristics, in both ab initio and model Hamiltonian settings, we conclude that evidence for such an exponential advantage across chemical space has yet to be found. While quantum computers may still prove useful for ground-state quantum chemistry through polynomial speedups, it may be prudent to assume exponential speedups are not generically available for this problem.
引用
收藏
页数:7
相关论文
共 38 条
  • [21] Using Higher-Order Singular Value Decomposition To Define Weakly Coupled and Strongly Correlated Clusters: The n-Body Tucker Approximation
    Mayhall, Nicholas J.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (10) : 4818 - 4828
  • [22] Exploiting Locality in Quantum Computation for Quantum Chemistry
    McClean, Jarrod R.
    Babbush, Ryan
    Love, Peter J.
    Aspuru-Guzik, Alan
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (24): : 4368 - 4380
  • [23] Towards the Solution of the Many-Electron Problem in Real Materials: Equation of State of the Hydrogen Chain with State-of-the-Art Many-Body Methods
    Motta, Mario
    Ceperley, David M.
    Chan, Garnet Kin-Lic
    Gomez, John A.
    Gull, Emanuel
    Guo, Sheng
    Jimenez-Hoyos, Carlos A.
    Tran Nguyen Lan
    Li, Jia
    Ma, Fengjie
    Millis, Andrew J.
    Prokof'ev, Nikolay V.
    Ray, Ushnish
    Scuseria, Gustavo E.
    Sorella, Sandro
    Stoudenmire, Edwin M.
    Sun, Qiming
    Tupitsyn, Igor S.
    White, Steven R.
    Zgid, Dominika
    Zhang, Shiwei
    [J]. PHYSICAL REVIEW X, 2017, 7 (03):
  • [24] The nonheme iron in photosystem II
    Mueh, Frank
    Zouni, Athina
    [J]. PHOTOSYNTHESIS RESEARCH, 2013, 116 (2-3) : 295 - 314
  • [25] Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm
    Nakatani, Naoki
    Chan, Garnet Kin-Lic
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (13)
  • [26] Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments
    O'Brien, Thomas E.
    Tarasinski, Brian
    Terhal, Barbara M.
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21 (02)
  • [27] Scalable Quantum Simulation of Molecular Energies
    O'Malley, P. J. J.
    Babbush, R.
    Kivlichan, I. D.
    Romero, J.
    McClean, J. R.
    Barends, R.
    Kelly, J.
    Roushan, P.
    Tranter, A.
    Ding, N.
    Campbell, B.
    Chen, Y.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Fowler, A. G.
    Jeffrey, E.
    Lucero, E.
    Megrant, A.
    Mutus, J. Y.
    Neeley, M.
    Neill, C.
    Quintana, C.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Coveney, P. V.
    Love, P. J.
    Neven, H.
    Aspuru-Guzik, A.
    Martinis, J. M.
    [J]. PHYSICAL REVIEW X, 2016, 6 (03):
  • [28] Tensor networks for complex quantum systems
    Orus, Roman
    [J]. NATURE REVIEWS PHYSICS, 2019, 1 (09) : 538 - 550
  • [29] Absence of Superconductivity in the Pure Two-Dimensional Hubbard Model
    Qin, Mingpu
    Chung, Chia-Min
    Shi, Hao
    Vitali, Ettore
    Hubig, Claudius
    Schollwoeck, Ulrich
    White, Steven R.
    Zhang, Shiwei
    [J]. PHYSICAL REVIEW X, 2020, 10 (03)
  • [30] Elucidating reaction mechanisms on quantum computers
    Reiher, Markus
    Wiebe, Nathan
    Svore, Krysta M.
    Wecker, Dave
    Troyer, Matthias
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (29) : 7555 - 7560