Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry

被引:95
作者
Lee, Seunghoon [1 ]
Lee, Joonho [2 ]
Zhai, Huanchen [1 ]
Tong, Yu [3 ]
Dalzell, Alexander M. [4 ]
Kumar, Ashutosh [5 ,6 ]
Helms, Phillip [1 ]
Gray, Johnnie [1 ]
Cui, Zhi-Hao [1 ]
Liu, Wenyuan [1 ]
Kastoryano, Michael [4 ,7 ]
Babbush, Ryan [8 ]
Preskill, John [4 ,9 ]
Reichman, David R. [2 ]
Campbell, Earl T. [10 ]
Valeev, Edward F. [5 ]
Lin, Lin [3 ,11 ]
Chan, Garnet Kin-Lic [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[2] Columbia Univ, Dept Chem, New York, NY 10027 USA
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[4] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
[5] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA
[6] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[7] Amazon Quantum Solut Lab, Seattle, WA 98170 USA
[8] Google Quantum AI, 340 Main St, Venice, CA 90291 USA
[9] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[10] Riverlane, Cambridge, England
[11] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
MATRIX RENORMALIZATION-GROUP; ELECTRONIC-STRUCTURE; CLUSTERS; IRON; COMPUTATION; ENERGY; ORDER;
D O I
10.1038/s41467-023-37587-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The extent of problems in quantum chemistry for which quantum algorithms could provide a speedup is still unclear, as well as the kind of speedup one should expect. Here, the authors look at the problem of ground state energy estimation, and gather theoretical and numerical evidence for the fact that an exponential quantum advantage is unlikely for generic problems of interest. Due to intense interest in the potential applications of quantum computing, it is critical to understand the basis for potential exponential quantum advantage in quantum chemistry. Here we gather the evidence for this case in the most common task in quantum chemistry, namely, ground-state energy estimation, for generic chemical problems where heuristic quantum state preparation might be assumed to be efficient. The availability of exponential quantum advantage then centers on whether features of the physical problem that enable efficient heuristic quantum state preparation also enable efficient solution by classical heuristics. Through numerical studies of quantum state preparation and empirical complexity analysis (including the error scaling) of classical heuristics, in both ab initio and model Hamiltonian settings, we conclude that evidence for such an exponential advantage across chemical space has yet to be found. While quantum computers may still prove useful for ground-state quantum chemistry through polynomial speedups, it may be prudent to assume exponential speedups are not generically available for this problem.
引用
收藏
页数:7
相关论文
共 38 条
  • [1] Adiabatic quantum computation
    Albash, Tameem
    Lidar, Daniel A.
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [2] The Hubbard Model
    Arovas, Daniel P.
    Berg, Erez
    Kivelson, Steven A.
    Raghu, Srinivas
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, 2022, 13 : 239 - 274
  • [3] Simulated quantum computation of molecular energies
    Aspuru-Guzik, A
    Dutoi, AD
    Love, PJ
    Head-Gordon, M
    [J]. SCIENCE, 2005, 309 (5741) : 1704 - 1707
  • [4] The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges
    Baiardi, Alberto
    Reiher, Markus
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (04)
  • [5] Iron-sulfur clusters: Nature's modular, multipurpose structures
    Beinert, H
    Holm, RH
    Munck, E
    [J]. SCIENCE, 1997, 277 (5326) : 653 - 659
  • [6] Physisorption of Water on Graphene: Subchemical Accuracy from Many-Body Electronic Structure Methods
    Brandenburg, Jan Gerit
    Zen, Andrea
    Fitzner, Martin
    Ramberger, Benjamin
    Kresse, Georg
    Tsatsoulis, Theodoros
    Grueneis, Andreas
    Michaelides, Angelos
    Alfe, Dario
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (03) : 358 - 368
  • [7] Low entanglement wavefunctions
    Chan, Garnet Kin-Lic
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2012, 2 (06) : 907 - 920
  • [8] The Density Matrix Renormalization Group in Quantum Chemistry
    Chan, Garnet Kin-Lic
    Sharma, Sandeep
    [J]. ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 62, 2011, 62 : 465 - 481
  • [9] State-of-the-art density matrix renormalization group and coupled cluster theory studies of the nitrogen binding curve
    Chan, GKL
    Kállay, M
    Gauss, J
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (13) : 6110 - 6116
  • [10] Systematic electronic structure in the cuprate parent state from quantum many-body simulations
    Cui, Zhi-Hao
    Zhai, Huanchen
    Zhang, Xing
    Chan, Garnet Kin-Lic
    [J]. SCIENCE, 2022, 377 (6611) : 1192 - +