A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound

被引:9
作者
Khalaf, Kareem [1 ]
Terrin, Maria [2 ]
Jovani, Manol [3 ]
Rizkala, Tommy [4 ]
Spadaccini, Marco [2 ]
Pawlak, Katarzyna M. [1 ]
Colombo, Matteo [2 ]
Andreozzi, Marta [2 ]
Fugazza, Alessandro [2 ]
Facciorusso, Antonio [5 ]
Grizzi, Fabio [6 ]
Hassan, Cesare [2 ,4 ]
Repici, Alessandro [2 ,4 ]
Carrara, Silvia [2 ]
机构
[1] Univ Toronto, St Michaels Hosp, Div Gastroenterol, Toronto, ON M5S 1A1, Canada
[2] Humanitas Res Hosp IRCCS, Div Gastroenterol & Digest Endoscopy, I-20089 Milan, Italy
[3] SUNY Downstate Univ, Maimonides Med Ctr, Div Gastroenterol, Brooklyn, NY 11219 USA
[4] Humanitas Univ, Dept Biomed Sci, I-20089 Milan, Italy
[5] Univ Foggia, Dept Med & Surg Sci, Sect Gastroenterol, I-71122 Foggia, Italy
[6] Humanitas Res Hosp IRCCS, Dept Immunol & Inflammat, I-20089 Milan, Italy
关键词
endoscopic ultrasound; artificial intelligence; biopsy; pathological diagnosis; DIFFERENTIAL-DIAGNOSIS; PANCREATIC-CANCER; EUS; RECOGNITION; MACHINE; TISSUE;
D O I
10.3390/jcm12113757
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Endoscopic Ultrasound (EUS) is widely used for the diagnosis of bilio-pancreatic and gastrointestinal (GI) tract diseases, for the evaluation of subepithelial lesions, and for sampling of lymph nodes and solid masses located next to the GI tract. The role of Artificial Intelligence in healthcare in growing. This review aimed to provide an overview of the current state of AI in EUS from imaging to pathological diagnosis and training. Methods: AI algorithms can assist in lesion detection and characterization in EUS by analyzing EUS images and identifying suspicious areas that may require further clinical evaluation or biopsy sampling. Deep learning techniques, such as convolutional neural networks (CNNs), have shown great potential for tumor identification and subepithelial lesion (SEL) evaluation by extracting important features from EUS images and using them to classify or segment the images. Results: AI models with new features can increase the accuracy of diagnoses, provide faster diagnoses, identify subtle differences in disease presentation that may be missed by human eyes, and provide more information and insights into disease pathology. Conclusions: The integration of AI in EUS images and biopsies has the potential to improve the diagnostic accuracy, leading to better patient outcomes and to a reduction in repeated procedures in case of non-diagnostic biopsies.
引用
收藏
页数:13
相关论文
共 47 条
  • [1] Digital pathology and artificial intelligence in translational medicine and clinical practice
    Baxi, Vipul
    Edwards, Robin
    Montalto, Michael
    Saha, Saurabh
    [J]. MODERN PATHOLOGY, 2022, 35 (01) : 23 - 32
  • [2] Comparison of Semi-Quantitative Scoring and Artificial Intelligence Aided Digital Image Analysis of Chromogenic Immunohistochemistry
    Bencze, Janos
    Szarka, Mate
    Koti, Balazs
    Seo, Woosung
    Hortobagyi, Tibor G. G.
    Bencs, Viktor
    Modis, Laszlo V.
    Hortobagyi, Tibor
    [J]. BIOMOLECULES, 2022, 12 (01)
  • [3] Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology
    Bera, Kaustav
    Schalper, Kurt A.
    Rimm, David L.
    Velcheti, Vamsidhar
    Madabhushi, Anant
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) : 703 - 715
  • [4] Artificial intelligence in cancer imaging: Clinical challenges and applications
    Bi, Wenya Linda
    Hosny, Ahmed
    Schabath, Matthew B.
    Giger, Maryellen L.
    Birkbak, Nicolai J.
    Mehrtash, Alireza
    Allison, Tavis
    Arnaout, Omar
    Abbosh, Christopher
    Dunn, Ian F.
    Mak, Raymond H.
    Tamimi, Rulla M.
    Tempany, Clare M.
    Swanton, Charles
    Hoffmann, Udo
    Schwartz, Lawrence H.
    Gillies, Robert J.
    Huang, Raymond Y.
    Aerts, Hugo J. W. L.
    [J]. CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) : 127 - 157
  • [5] Voice-Assisted Image Labeling for Endoscopic Ultrasound Classification Using Neural Networks
    Bonmati, Ester
    Hu, Yipeng
    Grimwood, Alexander
    Johnson, Gavin J.
    Goodchild, George
    Keane, Margaret G.
    Gurusamy, Kurinchi
    Davidson, Brian
    Clarkson, Matthew J.
    Pereira, Stephen P.
    Barratt, Dean C.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (06) : 1311 - 1319
  • [6] EUS elastography (strain ratio) and fractal-based quantitative analysis for the diagnosis of solid pancreatic lesions
    Carrara, Silvia
    Di Leo, Milena
    Grizzi, Fabio
    Correale, Loredana
    Rahal, Daoud
    Anderloni, Andrea
    Auriemma, Francesco
    Fugazza, Alessandro
    Preatoni, Paoletta
    Maselli, Roberta
    Hassan, Cesare
    Finati, Elena
    Mangiavillano, Benedetto
    Repici, Alessandro
    [J]. GASTROINTESTINAL ENDOSCOPY, 2018, 87 (06) : 1464 - 1473
  • [7] Artificial intelligence in pancreatic cancer: Toward precision diagnosis
    Cazacu, Irina M.
    Udristoiu, Anca
    Gruionu, Lucian Gheorghe
    Iacob, Andreea
    Gruionu, Gabriel
    Saftoiu, Adrian
    [J]. ENDOSCOPIC ULTRASOUND, 2019, 8 (06) : 357 - 359
  • [8] Deep Learning to Classify Intraductal Papillary Mucinous Neoplasms Using Magnetic Resonance Imaging
    Corral, Juan E.
    Hussein, Sarfaraz
    Kandel, Pujan
    Bolan, Candice W.
    Bagci, Ulas
    Wallace, Michael B.
    [J]. PANCREAS, 2019, 48 (06) : 805 - 810
  • [9] Diagnostic Value of Artificial Intelligence-Assisted Endoscopic Ultrasound for Pancreatic Cancer: A Systematic Review and Meta-Analysis
    Dumitrescu, Elena Adriana
    Ungureanu, Bogdan Silviu
    Cazacu, Irina M.
    Florescu, Lucian Mihai
    Streba, Liliana
    Croitoru, Vlad M.
    Sur, Daniel
    Croitoru, Adina
    Turcu-Stiolica, Adina
    Lungulescu, Cristian Virgil
    [J]. DIAGNOSTICS, 2022, 12 (02)
  • [10] Deep learning in cancer pathology: a new generation of clinical biomarkers
    Echle, Amelie
    Rindtorff, Niklas Timon
    Brinker, Titus Josef
    Luedde, Tom
    Pearson, Alexander Thomas
    Kather, Jakob Nikolas
    [J]. BRITISH JOURNAL OF CANCER, 2021, 124 (04) : 686 - 696