Intelligent fault classification of air compressors using Harris hawks optimization and machine learning algorithms

被引:11
|
作者
Afia, Adel [1 ,2 ,3 ]
Gougam, Fawzi [2 ]
Rahmoune, Chemseddine [2 ]
Touzout, Walid [2 ]
Ouelmokhtar, Hand [2 ]
Benazzouz, Djamel [2 ]
机构
[1] Houari Boumediene Univ Sci & Technol, Fac Mech Engn & Proc Engn, Dept Mech & Proc Engn, Algiers, Algeria
[2] Univ MHamed Bougara Boumerdes, Dept Mech Engn, Solid Mech & Syst Lab LMSS, Boumerdes, Algeria
[3] Houari Boumediene Univ Sci & Technol, Fac Mech Engn & Proc Engn, Dept Mech & Proc Engn, Algiers, Algeria
关键词
Fault diagnosis; air compressor; feature extraction; feature selection; feature classification; ACOUSTIC-EMISSION PARAMETERS; PARTICLE SWARM OPTIMIZATION; DECISION TREE; ROTATING MACHINERY; DIAGNOSIS; TRANSFORM; ENSEMBLE; SYSTEM; SCHEME;
D O I
10.1177/01423312231174939
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to their complexity and often harsh working environment, air compressors are inevitably exposed to a variety of faults and defects during their operation. Thus, condition monitoring is critically required for early fault recognition and detection to avoid any type industrial failures. In this paper, an intelligent algorithm for reciprocating air compressor fault diagnosis is developed using real-time acoustic signals acquired from an air compressor with one healthy and seven different faulty states such as leakage inlet valve (LIV), leakage outlet valve (LOV), non-return valve (NRV), piston ring, flywheel, rider-belt and bearing defects. The proposed algorithm mainly consists of three steps: feature extraction, selection, and classification. For feature extraction, experimental acoustic signals are decomposed using maximal overlap discrete wavelet packet transform (MODWPT) by six levels into 64 wavelet coefficients (nodes). Thereafter, time domain features are calculated for each node to build each air compressor's health state feature matrix. Each feature matrix dimension is reduced by selecting the most useful features using Harris hawks optimization (HHO) in the feature selection step. Finally, for feature classification, selected features are used as inputs for random forest (RF), ensemble tree (ET) and K-nearest neighbors (KNN) to detect, identify, and classify the compressor health states with high classification accuracy. Comparative studies with several feature extraction and selection methods prove the proposed approach's efficiency in detecting, identifying, and classifying all air compressor faults.
引用
收藏
页码:359 / 378
页数:20
相关论文
共 50 条
  • [31] Bearing fault diagnostic using machine learning algorithms
    Sawaqed, Laith S.
    Alrayes, Ayman M.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2020, 9 (04) : 341 - 350
  • [32] Fault detection of automobile suspension system using decision tree algorithms: A machine learning approach
    Balaji, PArun
    Sugumaran, V
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2024, 238 (03) : 1206 - 1217
  • [33] Fault Detection and Classification in PV Arrays Using Machine Learning Algorithms in the Presence of Noisy data
    Vahidi, Ali
    Golkar, Masoud Aliakbar
    2022 9TH IRANIAN CONFERENCE ON RENEWABLE ENERGY & DISTRIBUTED GENERATION (ICREDG), 2022,
  • [34] Intelligent Machine Fault Diagnosis Using Convolutional Neural Networks and Transfer Learning
    Zhang, Wentao
    Zhang, Ting
    Cui, Guohua
    Pan, Ying
    IEEE ACCESS, 2022, 10 : 50959 - 50973
  • [35] Intelligent Detection of False Information in Arabic Tweets Utilizing Hybrid Harris Hawks Based Feature Selection and Machine Learning Models
    Thaher, Thaer
    Saheb, Mahmoud
    Turabieh, Hamza
    Chantar, Hamouda
    SYMMETRY-BASEL, 2021, 13 (04):
  • [36] An Antinoise Feature Extraction and Improved Harris Hawks Optimization for On-Load Tap Changer Mechanical Fault Diagnosis
    Liang, Xuanhong
    Wang, Youyuan
    Gu, Hongrui
    IEEE SENSORS JOURNAL, 2024, 24 (07) : 10400 - 10418
  • [37] Classification of Cardiac Arrhythmias Using Machine Learning Algorithms
    Garcia-Aquino, Christian
    Mujica-Vargas, Dante
    Matuz-Cruz, Manuel
    TELEMATICS AND COMPUTING, WITCOM 2021, 2021, 1430 : 174 - 185
  • [38] Classification of SSH Attacks using Machine Learning Algorithms
    Sadasivam, Gokul Kannan
    Hota, Chittaranjan
    Anand, Bhojan
    2016 6TH INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY (ICITCS 2016), 2016, : 260 - 265
  • [39] Water Quality Classification Using Machine Learning Algorithms
    Alnaqeb, Reem
    Alketbi, Khuloud
    Alrashdi, Fatema
    Ismail, Heba
    2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [40] Liver Diseases Classification Using Machine Learning Algorithms
    Jovovic, Ivan
    Grebovic, Marko
    Pokvic, Lejla Gurbeta
    Popovic, Tomo
    Cakic, Stevan
    MEDICON 2023 AND CMBEBIH 2023, VOL 1, 2024, 93 : 585 - 593