Electrolyzer energy dominates separation costs in state-of-the-art CO2 electrolyzers: Implications for single-pass CO2 utilization

被引:31
作者
Moore, Thomas [1 ]
Oyarzun, Diego I. [1 ]
Li, Wenqin [1 ]
Lin, Tiras Y. [1 ]
Goldman, Maxwell [1 ]
Wong, Andrew A. [1 ]
Jaffer, Shaffiq A. [2 ]
Sarkar, Amitava [2 ]
Baker, Sarah E. [1 ]
Duoss, Eric B. [1 ]
Hahn, Christopher [1 ]
机构
[1] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA
[2] TotalEnergies Amer Serv Inc, 82 South St, Hopkinton, MA 01748 USA
关键词
CARBON-DIOXIDE ABSORPTION; ADVANCED FLASH STRIPPER; POTASSIUM CARBONATE; CAPTURE; REDUCTION; ELECTROREDUCTION; ELECTROSYNTHESIS; CHEMICALS; PRODUCTS; INSIGHTS;
D O I
10.1016/j.joule.2023.03.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In low-temperature CO2 electrolysis, a fundamental trade-off exists between maximizing electrolyzer performance and minimizing downstream CO2 recovery. By coupling a down-the-gas-channel electrolyzer model with a techno-economic analysis, we find that the optimal single-pass CO2 conversion for ethylene production is typically low-on the order of 5%-10%-although larger optima are found if the H2 faradic efficiency is very low. Similarly, strategies for eliminating carbonate crossover require more energy than downstream gas separation if they increase the cell potential by X0.2 V; however, when CAPEX are accounted for, this "break-even"voltage increases to -0.4 to 0.8 V for electricity prices vary-ing from 6c/kWh to 1.5c/kWh. These findings are a consequence of the low energy requirements of industrial gas separation relative to electrochemical CO2 reduction. Under most circumstances, main-taining near-optimal electrolyzer performance is more important than reducing or eliminating downstream gas separations.
引用
收藏
页码:782 / 796
页数:16
相关论文
共 61 条
[51]   Efficient Methane Electrosynthesis Enabled by Tuning Local CO2 Availability [J].
Wang, Xue ;
Xu, Aoni ;
Li, Fengwang ;
Hung, Sung-Fu ;
Nam, Dae-Hyun ;
Gabardo, Christine M. ;
Wang, Ziyun ;
Xu, Yi ;
Ozden, Adnan ;
Rasouli, Armin Sedighian ;
Ip, Alexander H. ;
Sinton, David ;
Sargent, Edward H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (07) :3525-3531
[52]   Towards membrane-electrode assembly systems for CO2 reduction: a modeling study [J].
Weng, Lien-Chun ;
Bell, Alexis T. ;
Weber, Adam Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (06) :1950-1968
[53]   Modeling gas-diffusion electrodes for CO2 reduction [J].
Weng, Lien-Chun ;
Bell, Alexis T. ;
Weber, Adam Z. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (25) :16973-16984
[54]   Quantification of water transport in a CO2 electrolyzer [J].
Wheeler, Danika G. ;
Mowbray, Benjamin A. W. ;
Reyes, Angelica ;
Habibzadeh, Faezeh ;
He, Jingfu ;
Berlinguette, Curtis P. .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (12) :5126-5134
[55]  
Wu Y., 2018, THESIS U MELBOURNE
[56]   Enhanced multi-carbon selectivity via CO electroreduction approach [J].
Xia, Rong ;
Lv, Jing-Jing ;
Ma, Xinbin ;
Jiao, Feng .
JOURNAL OF CATALYSIS, 2021, 398 :185-191
[57]   Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment [J].
Xing, Zhuo ;
Hu, Lin ;
Ripatti, Donald S. ;
Hu, Xun ;
Feng, Xiaofeng .
NATURE COMMUNICATIONS, 2021, 12 (01)
[58]   Cation-Driven Increases of CO2 Utilization in a Bipolar Membrane Electrode Assembly for CO2 Electrolysis [J].
Yang, Kailun ;
Li, Mengran ;
Subramanian, Siddhartha ;
Blommaert, Marijn A. ;
Smith, Wilson A. ;
Burdyny, Thomas .
ACS ENERGY LETTERS, 2021, 6 (12) :4291-4298
[59]  
Ye Y., 2018, 14 GREENH GAS CONTR, DOI [10.2139/ssrn.3366219, DOI 10.2139/SSRN.3366219]
[60]   The use of carbonic anhydrase to accelerate carbon dioxide capture processes [J].
Yong, Joel K. J. ;
Stevens, Geoff W. ;
Caruso, Frank ;
Kentish, Sandra E. .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2015, 90 (01) :3-10