Genomic convergence underlying high-altitude adaptation in alpine plants

被引:26
作者
Zhang, Xu [1 ,2 ]
Kuang, Tianhui [3 ]
Dong, Wenlin [1 ,2 ,4 ]
Qian, Zhihao [1 ,2 ,4 ]
Zhang, Huajie [1 ,2 ]
Landis, Jacob B. B. [5 ,6 ]
Feng, Tao [1 ,2 ]
Li, Lijuan [1 ,2 ,4 ]
Sun, Yanxia [1 ,2 ]
Huang, Jinling [3 ,7 ,8 ]
Deng, Tao [3 ]
Wang, Hengchang [1 ,2 ]
Sun, Hang [3 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Plant Germplasm Enhancement & Specialt, Wuhan Bot Garden, Wuhan 430074, Peoples R China
[2] Chinese Acad Sci, Ctr Conservat Biol, Core Bot Gardens, Wuhan 430074, Peoples R China
[3] Chinese Acad Sci, Kunming Inst Bot, Yunnan Int Joint Lab Biodivers Cent Asia, Key Lab Plant Divers & Biogeog East Asia, Kunming 650201, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Cornell Univ, Sch Integrat Plant Sci, Sect Plant Biol & L H Bailey Hortorium, Ithaca, NY 14850 USA
[6] Boyce Thompson Inst Plant Res, BTI Computat Biol Ctr, Ithaca, NY 14853 USA
[7] Henan Univ, Sch Life Sci, State Key Lab Crop Stress Adaptat & Improvement, Kaifeng 475004, Peoples R China
[8] East Carolina Univ, Dept Biol, Greenville, NC 27858 USA
基金
中国国家自然科学基金;
关键词
adaptation; alpine plants; evolutionary rates; genomic convergence; greenhouse" morphology; high altitude; PHYLOGENETIC ANALYSIS; ARABIDOPSIS; EVOLUTION; PROTEIN; GENE; ALIGNMENT; PROGRAM; FAMILY; TOOL; BIOSYNTHESIS;
D O I
10.1111/jipb.13485
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Evolutionary convergence is one of the most striking examples of adaptation driven by natural selection. However, genomic evidence for convergent adaptation to extreme environments remains scarce. Here, we assembled reference genomes of two alpine plants, Saussurea obvallata (Asteraceae) and Rheum alexandrae (Polygonaceae), with 37,938 and 61,463 annotated protein-coding genes. By integrating an additional five alpine genomes, we elucidated genomic convergence underlying high-altitude adaptation in alpine plants. Our results detected convergent contractions of disease-resistance genes in alpine genomes, which might be an energy-saving strategy for surviving in hostile environments with only a few pathogens present. We identified signatures of positive selection on a set of genes involved in reproduction and respiration (e.g., MMD1, NBS1, and HPR), and revealed signatures of molecular convergence on genes involved in self-incompatibility, cell wall modification, DNA repair and stress resistance, which may underlie adaptation to extreme cold, high ultraviolet radiation and hypoxia environments. Incorporating transcriptomic data, we further demonstrated that genes associated with cuticular wax and flavonoid biosynthetic pathways exhibit higher expression levels in leafy bracts, shedding light on the genetic mechanisms of the adaptive "greenhouse" morphology. Our integrative data provide novel insights into convergent evolution at a high-taxonomic level, aiding in a deep understanding of genetic adaptation to complex environments.
引用
收藏
页码:1620 / 1635
页数:16
相关论文
共 97 条
  • [1] An oxygen-sensing mechanism for angiosperm adaptation to altitude
    Abbas, Mohamad
    Sharma, Gunjan
    Dambire, Charlene
    Marquez, Julietta
    Alonso-Blanco, Carlos
    Proano, Karina
    Holdsworth, Michael J.
    [J]. NATURE, 2022, 606 (7914) : 565 - +
  • [2] Flavonoids as antioxidants in plants: Location and functional significance
    Agati, Giovanni
    Azzarello, Elisa
    Pollastri, Susanna
    Tattini, Massimiliano
    [J]. PLANT SCIENCE, 2012, 196 : 67 - 76
  • [3] A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots
    Albert, Nick W.
    Davies, Kevin M.
    Lewis, David H.
    Zhang, Huaibi
    Montefiori, Mirco
    Brendolise, Cyril
    Boase, Murray R.
    Ngo, Hanh
    Jameson, Paula E.
    Schwinn, Kathy E.
    [J]. PLANT CELL, 2014, 26 (03) : 962 - 980
  • [4] Adaptation to High Altitude: Phenotypes and Genotypes
    Beall, Cynthia M.
    [J]. ANNUAL REVIEW OF ANTHROPOLOGY, VOL 43, 2014, 43 : 251 - 272
  • [5] Efficient pollination of alpine plants
    Bingham, RA
    Ort, AR
    [J]. NATURE, 1998, 391 (6664) : 238 - 239
  • [6] Multiple Genetic Trajectories to Extreme Abiotic Stress Adaptation in Arctic Brassicaceae
    Birkeland, Siri
    Gustafsson, A. Lovisa S.
    Brysting, Anne K.
    Brochmann, Christian
    Nowak, Michael D.
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2020, 37 (07) : 2052 - 2068
  • [7] Overexpression of Arabidopsis ECERIFERUM1 Promotes Wax Very-Long-Chain Alkane Biosynthesis and Influences Plant Response to Biotic and Abiotic Stresses
    Bourdenx, Brice
    Bernard, Amelie
    Domergue, Frederic
    Pascal, Stephanie
    Leger, Amandine
    Roby, Dominique
    Pervent, Marjorie
    Vile, Denis
    Haslam, Richard P.
    Napier, Johnathan A.
    Lessire, Rene
    Joubes, Jerome
    [J]. PLANT PHYSIOLOGY, 2011, 156 (01) : 29 - 45
  • [8] BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP plus and AUGUSTUS supported by a protein database
    Bruna, Tomas
    Hoff, Katharina J.
    Lomsadze, Alexandre
    Stanke, Mario
    Borodovsky, Mark
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (01) : 1 - 11
  • [9] eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale
    Cantalapiedra, Carlos P.
    Hernandez-Plaza, Ana
    Letunic, Ivica
    Bork, Peer
    Huerta-Cepas, Jaime
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2021, 38 (12) : 5825 - 5829
  • [10] The Roles of Auxin Biosynthesis YUCCA Gene Family in Plants
    Cao, Xu
    Yang, Honglei
    Shang, Chunqiong
    Ma, Sang
    Liu, Li
    Cheng, Jialing
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (24)