In situ formed Cu3P@CuOx as an efficient electrocatalyst for urea electrooxidation

被引:15
作者
Bandal, H. A. [1 ]
Kim, Hern [1 ]
机构
[1] Myongji Univ, Environm Waste Recycle Inst, Dept Energy Sci & Technol, Yongin 17058, South Korea
基金
新加坡国家研究基金会;
关键词
Urea electrooxidation; Cu3P; Hydrogen generation; OXIDATION REACTION; BIFUNCTIONAL ELECTROCATALYSTS; NICKEL NANOPARTICLES; HYDROGEN EVOLUTION; CATALYST; NANOROD; STATES;
D O I
10.1016/j.apsusc.2023.156925
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Substitution of the water oxidation reaction with the urea oxidation reaction can lessen the cost of H2 generation while providing a pathway for wastewater treatment. Nevertheless, an efficient and robust catalyst is required to surmount the kinetic limitations of the urea oxidation reaction (UOR). In this regard, we demonstrate a facile process for depositing Cu3P microspheres on the nickel foam. Based on the results of the post-UOR character-ization of Cu3P, it appears that during UOR, Cu3P was subjected to in-situ surface oxidation to yield a Cu3P@CuOx heterostructure containing a catalytically active amorphous layer of CuOx supported in a conducting Cu3P matrix. As a UOR electrocatalyst, Cu3P was even superior to the RuO2, and it generated a current density of 10 and 100 mA cm-2 at 1.37 and 1.4 V, respectively, with a Tafel slope of 29 mV dec-1. Cu3P displayed a turnover frequency of 1.42 x 10-3 s- 1 at 1.4 V, indicating its high intrinsic catalytic activity. The Cu3P also demonstrated good stability at current densities up to 50 mA cm-2.
引用
收藏
页数:9
相关论文
共 53 条
[1]   In situ construction of Fe3O4@FeOOH for efficient electrocatalytic urea oxidation [J].
Bandal, Harshad A. ;
Kim, Hern .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 627 :1030-1038
[2]   Monodisperse nickel nanoparticles supported on multi-walls carbon nanotubes as an effective catalyst for the electro-oxidation of urea [J].
Bian, Lulu ;
Du, Qingyang ;
Luo, Mulan ;
Qu, Long ;
Li, Mingtao .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (40) :25244-25250
[3]   Formation and Stabilization of NiOOH by Introducing α-FeOOH in LDH: Composite Electrocatalyst for Oxygen Evolution and Urea Oxidation Reactions [J].
Cai, Minmin ;
Zhu, Qian ;
Wang, Xiyang ;
Shao, Zhiyu ;
Yao, Lu ;
Zeng, Hui ;
Wu, Xiaofeng ;
Chen, Jun ;
Huang, Keke ;
Feng, Shouhua .
ADVANCED MATERIALS, 2023, 35 (07)
[4]   Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite microrod arrays [J].
Cao, Jun ;
Li, Haichao ;
Zhu, Ruitong ;
Ma, Li ;
Zhou, Kechao ;
Wei, Qiuping ;
Luo, Fenghua .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 844
[5]   Boosting glucose oxidation by constructing Cu-Cu2O heterostructures [J].
Cao, Kangzhe ;
Zhang, Hang ;
Gao, Zihui ;
Liu, Yiyuan ;
Jia, Yongheng ;
Liu, Huiqiao .
NEW JOURNAL OF CHEMISTRY, 2020, 44 (42) :18449-18456
[6]   Ionic Liquid-Derived Co3O4-N/S-Doped Carbon Catalysts for the Enhanced Water Oxidation [J].
Chaugule, Avinash A. ;
Mane, Vishwanath S. ;
Bandal, Harshad A. ;
Kim, Hern ;
Kumbhar, Avinash S. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (17) :14889-14898
[7]   Cu3P/CuO Core-Shell Nanorod Arrays as High-Performance Electrocatalysts for Water Oxidation [J].
Du, Jian ;
Li, Fei ;
Wang, Yong ;
Zhu, Yong ;
Sun, Licheng .
CHEMELECTROCHEM, 2018, 5 (15) :2064-2068
[8]   Enhanced Electrocatalytic Oxidation of Urea at CuOx-NiOx Nanoparticle-Based Binary Catalyst Modified Polyaniline/GC Electrodes [J].
Goda, Mona A. ;
Abd El-Moghny, Muhammad G. ;
El-Deab, Mohamed S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (06)
[9]   Lanthanum-incorporated β-Ni(OH)2 nanoarrays for robust urea electro-oxidation [J].
Hao, Pin ;
Xin, Ying ;
Wang, Qian ;
Li, Liyi ;
Zhao, Zhenhuan ;
Wen, Houguang ;
Xie, Junfeng ;
Cui, Guanwei ;
Tang, Bo .
CHEMICAL COMMUNICATIONS, 2021, 57 (16) :2029-2032
[10]   Synergistic effect of Cu-doped NiO for enhancing urea electrooxidation: Comparative electrochemical and DFT studies [J].
Hefnawy, Mahmoud A. ;
Fadlallah, Sahar A. ;
El-Sherif, Rabab M. ;
Medany, Shymaa S. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 896