A Review of Long Short-Term Memory Approach for Time Series Analysis and Forecasting

被引:4
|
作者
Ab Kader, Nur Izzati [1 ]
Yusof, Umi Kalsom [1 ]
Khalid, Mohd Nor Akmal [2 ]
Husain, Nik Rosmawati Nik [3 ]
机构
[1] Univ Sains, Sch Comp Sci, George Town 11800, Malaysia
[2] Japan Adv Inst Sci & Technol, Sch Informat Sci, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
[3] Univ Sains Malaysia, Sch Med Sci, Dept Community Med, Kota Baharu 16150, Kelantan, Malaysia
来源
PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND INTELLIGENT SYSTEMS, ICETIS 2022, VOL 2 | 2023年 / 573卷
关键词
Long short-term memory; Time series analysis; Time series forecasting; Deep learning; PREDICTION;
D O I
10.1007/978-3-031-20429-6_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The long short-term memory (LSTM) approach has evolved into cutting-edge machine learning techniques. It belongs to the category of deep learning algorithms originating from Deep Recurrent Neural Network (DRNN) forms. In recent years, time series analysis and forecasting utilizing LSTM can be found in various domains, including finance, supply and demand forecasting, and health monitoring. This paper aims to analyze the previous recent studies from 2017 to 2021, emphasizing the LSTM approach to time series analysis and forecasting, highlighting the current enhancement methods in LSTM. It is found that the applications of LSTM in the current research related to time series involve forecasting or both. The finding also demonstrated the current application and advancement of LSTM using different enhancement techniques such as hyperparameter optimization, hybrid and ensemble. However, most researchers opt to hybridize LSTM with other algorithms. Further studying could be applied to improve LSTM performance, especially in the domain study, inwhich the LSTM enhancement technique has not been widely applied yet.
引用
收藏
页码:12 / 21
页数:10
相关论文
共 50 条
  • [41] A short-term water demand forecasting model using multivariate long short-term memory with meteorological data
    Zanfei, Ariele
    Brentan, Bruno Melo
    Menapace, Andrea
    Righetti, Maurizio
    JOURNAL OF HYDROINFORMATICS, 2022, 24 (05) : 1053 - 1065
  • [42] Time Series Electrical Motor Drives Forecasting Based on Simulation Modeling and Bidirectional Long-Short Term Memory
    Le, Thi-Thu-Huong
    Oktian, Yustus Eko
    Jo, Uk
    Kim, Howon
    SENSORS, 2023, 23 (17)
  • [43] Time Series Forecasting for Energy Management: Neural Circuit Policies (NCPs) vs. Long Short-Term Memory (LSTM) Networks
    Palma, Giulia
    Chengalipunath, Elna Sara Joy
    Rizzo, Antonio
    ELECTRONICS, 2024, 13 (18)
  • [44] An adaptive particle swarm optimization-based hybrid long short-term memory model for stock price time series forecasting
    Kumar, Gourav
    Singh, Uday Pratap
    Jain, Sanjeev
    SOFT COMPUTING, 2022, 26 (22) : 12115 - 12135
  • [45] Stable Forecasting of Environmental Time Series via Long Short Term Memory Recurrent Neural Network
    Kim, Kangil
    Kim, Dong-Kyun
    Noh, Junhyug
    Kim, Minhyeok
    IEEE ACCESS, 2018, 6 : 75216 - 75228
  • [46] Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis
    Jan, Faheem
    Shah, Ismail
    Ali, Sajid
    ENERGIES, 2022, 15 (09)
  • [47] Short-Term Forecasting of Hospital Discharge Volume based on Time Series Analysis
    Luo, Li
    Xu, Xueru
    Li, Jialing
    Shen, Wenwu
    2017 IEEE 19TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATIONS AND SERVICES (HEALTHCOM), 2017,
  • [48] Attention meets long short-term memory: A deep learning network for traffic flow forecasting
    Fang, Weiwei
    Zhuo, Wenhao
    Yan, Jingwen
    Song, Youyi
    Jiang, Dazhi
    Zhou, Teng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 587
  • [49] Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting
    Atef, Sara
    Eltawil, Amr B.
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 187 (187)
  • [50] Reduction in Sensor Response Time using Long Short-Term Memory Network Forecasting
    Ward, Simon J.
    Weiss, Sharon M.
    APPLICATIONS OF MACHINE LEARNING 2023, 2023, 12675