A Review of Long Short-Term Memory Approach for Time Series Analysis and Forecasting

被引:4
|
作者
Ab Kader, Nur Izzati [1 ]
Yusof, Umi Kalsom [1 ]
Khalid, Mohd Nor Akmal [2 ]
Husain, Nik Rosmawati Nik [3 ]
机构
[1] Univ Sains, Sch Comp Sci, George Town 11800, Malaysia
[2] Japan Adv Inst Sci & Technol, Sch Informat Sci, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
[3] Univ Sains Malaysia, Sch Med Sci, Dept Community Med, Kota Baharu 16150, Kelantan, Malaysia
来源
PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND INTELLIGENT SYSTEMS, ICETIS 2022, VOL 2 | 2023年 / 573卷
关键词
Long short-term memory; Time series analysis; Time series forecasting; Deep learning; PREDICTION;
D O I
10.1007/978-3-031-20429-6_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The long short-term memory (LSTM) approach has evolved into cutting-edge machine learning techniques. It belongs to the category of deep learning algorithms originating from Deep Recurrent Neural Network (DRNN) forms. In recent years, time series analysis and forecasting utilizing LSTM can be found in various domains, including finance, supply and demand forecasting, and health monitoring. This paper aims to analyze the previous recent studies from 2017 to 2021, emphasizing the LSTM approach to time series analysis and forecasting, highlighting the current enhancement methods in LSTM. It is found that the applications of LSTM in the current research related to time series involve forecasting or both. The finding also demonstrated the current application and advancement of LSTM using different enhancement techniques such as hyperparameter optimization, hybrid and ensemble. However, most researchers opt to hybridize LSTM with other algorithms. Further studying could be applied to improve LSTM performance, especially in the domain study, inwhich the LSTM enhancement technique has not been widely applied yet.
引用
收藏
页码:12 / 21
页数:10
相关论文
共 50 条
  • [1] Effective long short-term memory with fruit fly optimization algorithm for time series forecasting
    Peng, Lu
    Zhu, Qing
    Lv, Sheng-Xiang
    Wang, Lin
    SOFT COMPUTING, 2020, 24 (19) : 15059 - 15079
  • [2] Time series forecasting of weight for diuretic dose adjustment using bidirectional long short-term memory
    Choi, Heejung
    Kim, Yunha
    Kang, Heejun
    Seo, Hyeram
    Kim, Minkyoung
    Han, Jiye
    Kee, Gaeun
    Park, Seohyun
    Ko, Soyoung
    Jung, Hyoje
    Kim, Byeolhee
    Roh, Jae-Hyung
    Jun, Tae Joon
    Kim, Young-Hak
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] MPM: Multi Patterns Memory Model for Short-Term Time Series Forecasting
    Wang, Dezheng
    Liu, Rongjie
    Chen, Congyan
    Li, Shihua
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (01) : 438 - 448
  • [4] Effective long short-term memory with fruit fly optimization algorithm for time series forecasting
    Lu Peng
    Qing Zhu
    Sheng-Xiang Lv
    Lin Wang
    Soft Computing, 2020, 24 : 15059 - 15079
  • [5] Time Series Forecasting Using a Hybrid Prophet and Long Short-Term Memory Model
    Kong, Yih Hern
    Lim, Khai Yin
    Chin, Wan Yoke
    SOFT COMPUTING IN DATA SCIENCE, SCDS 2021, 2021, 1489 : 183 - 196
  • [6] Forecasting Covid-19 Time Series Data using the Long Short-Term Memory (LSTM)
    Mukhtar, Harun
    Taufiq, Reny Medikawati
    Herwinanda, Ilham
    Winarso, Doni
    Hayami, Regiolina
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (10) : 211 - 217
  • [7] A new deep intuitionistic fuzzy time series forecasting method based on long short-term memory
    Cem Kocak
    Erol Egrioglu
    Eren Bas
    The Journal of Supercomputing, 2021, 77 : 6178 - 6196
  • [8] A new deep intuitionistic fuzzy time series forecasting method based on long short-term memory
    Kocak, Cem
    Egrioglu, Erol
    Bas, Eren
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (06) : 6178 - 6196
  • [9] On Integrating Time-Series Modeling with Long Short-Term Memory and Bayesian Optimization: A Comparative Analysis for Photovoltaic Power Forecasting
    Pacella, Massimo
    Papa, Antonio
    Papadia, Gabriele
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [10] Short-term traffic travel time forecasting using ensemble approach based on long short-term memory networks
    Jia, Xingli
    Zhou, Wuxiao
    Yang, Hongzhi
    Li, Shuangqing
    Chen, Xingpeng
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (06) : 1262 - 1273