Density functional theory study of adsorption of H2O on γ-U(110) surface

被引:1
|
作者
Zhu, S-L [1 ]
Yang, Y-X [1 ]
Zhang, Z-F [1 ]
Liu, X-H [1 ]
Tian, X-F [1 ]
Yu, Y. [2 ]
Li, D. [1 ]
机构
[1] Chengdu Univ Technol, Coll Nucl Technol & Automat Engn, Chengdu 610000, Sichuan, Peoples R China
[2] Chengdu Univ Informat Technol, Coll Optoelect Technol, Chengdu 610000, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Adsorption; Water molecular; gamma-U(110); Dissociation; DFT calculations; WATER-VAPOR; INITIAL-STAGES; URANIUM; OXIDATION; SPECTROSCOPY; O-2;
D O I
10.1007/s12648-023-02589-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The adsorption and dissociation of H2O on gamma-U(110) surface have been studied using density functional theory calculations. For molecular adsorption, the water molecules prefer to be adsorbed parallelly on the top site. The adsorption energy of 2.06 eV and charge transfer between H2O and the surface suggest that chemical adsorption has taken place. The hybridization between 6d orbitals of surface uranium and 2p orbitals of oxygen in H2O plays a dominant role in the chemical adsorption model. Compared with molecular adsorptions, the H2O in gamma-U(110) surface was found to be more prone to dissociative adsorptions. The adsorbed H2O can easily dissociate into OH and H with an energy barrier of 0.37 eV and the reaction is exothermic by 1.73 eV. Moreover, the OH group, perpendicular to the surface, can furtherly dissociate into H and O with a 0.57 eV energy barrier and the reaction is exothermic by 1.2 eV. The dissociation of H2O is highly exothermic and the dissociation barrier is significantly lower than the adsorption energy, indicating that H2O easily dissociates on the gamma-U(110) surface.
引用
收藏
页码:2297 / 2306
页数:10
相关论文
共 50 条
  • [21] Adsorption and dissociation of H2 on PuO2 (110) surface: A density functional theory study
    Yu, H. L.
    Li, G.
    Li, H. B.
    Qiu, R. Z.
    Huang, H.
    Meng, D. Q.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 654 : 567 - 573
  • [22] Density functional theory study on the adsorption and decomposition of H2O on clean and oxygen-modified Pd (100) surface
    Jiang, Zhao
    Li, Lu
    Li, Mengmeng
    Li, Ruosong
    Fang, Tao
    APPLIED SURFACE SCIENCE, 2014, 301 : 468 - 474
  • [23] Density Functional Theory Study of CO2 and H2O Adsorption on a Monoclinic WO3(001) Surface
    Liu Li
    Lin Maohai
    Liu Zhongbo
    Sun Honggang
    Zhao Xian
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2017, 33 (02) : 255 - 260
  • [24] Density functional theory study of CO2 and H2O adsorption on a monoclinic WO3(001) surface
    Li Liu
    Maohai Lin
    Zhongbo Liu
    Honggang Sun
    Xian Zhao
    Chemical Research in Chinese Universities, 2017, 33 : 255 - 260
  • [25] Density Functional Theory Study of Ozone Adsorption on CuO(110) Surface
    Qin Wu
    Li Xin
    Meng Xiang-Li
    Qiang Liang-Sheng
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2009, 30 (01): : 164 - 169
  • [26] Adsorption of Cysteine on the Au(110)-surface: A Density Functional Theory Study
    Hoeffling, B.
    Ortmann, F.
    Hannewald, K.
    Bechstedt, F.
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING '09, 2010, : 53 - +
  • [27] Density functional theory study of cyanide adsorption on the sphalerite (110) surface
    Qiu, Tingsheng
    Nie, Qingmin
    He, Yuanqing
    Yuan, Qinzhi
    APPLIED SURFACE SCIENCE, 2019, 465 : 678 - 685
  • [28] Zirconia (110) surface adsorption behavior - A density functional theory study
    Jalili, Seifollah
    Keshavarz, Mohammad
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2020, 1173
  • [29] Density functional study of H2O adsorption and dissociation on WC(0001)
    Zheng, Wanfang
    Chen, Litao
    Ma, Chun'an
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2014, 1039 : 75 - 80
  • [30] Surface sulfur functionalized defects on the synergistic and competitive effects of CO2 and H2O adsorption: Density functional theory study
    Zhou, Bin
    Feng, Tai
    Liu, Dingtong
    Wang, Hao
    Wang, Yueyang
    Wang, Cuiping
    Li, Jun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 363