Boosted Polysulfide Conversion by Co, Mn Bimetallic-Modulated Nitrogen-Carbon Material for Advanced Lithium-Sulfur Batteries

被引:21
作者
Luo, Yixin [1 ]
Wu, Ming [2 ]
Zhang, Dan [1 ]
Liu, Jiaxiang [1 ]
He, Yongqian [1 ]
Zhang, Wanqi [1 ]
Liu, Sisi [1 ]
Dong, Yu [1 ]
Xiang, Cong [1 ]
Yang, Li [3 ]
Liu, Hong [1 ]
Shu, Hongbo [1 ]
Wang, Xianyou [4 ]
Chen, Manfang [1 ]
机构
[1] Xiangtan Univ, Sch Chem, Natl Base Int Sci & Technol Cooperat, Xiangtan 411105, Peoples R China
[2] Yangzhou Univ, Inst Innovat Mat & Energy, Yangzhou 225009, Jiangsu, Peoples R China
[3] Hunan Univ Sci & Technol, Hunan Prov Key Lab Adv Mat New Energy Storage & Co, Xiangtan 411201, Hunan, Peoples R China
[4] Xiangtan Univ, Sch Chem, Natl Base Int Sci & Technol Cooperat, Xiangtan 411105, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
lithium-sulfur battery; shuttle effect; bimetallic modulating; catalysis; separator modification; DOPED CARBON; ELECTRON-TRANSFER; SEPARATOR; CATHODE; SHELL; HOST;
D O I
10.1021/acssuschemeng.2c06029
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-sulfur batteries (LSBs) are regarded as one of the most promising future generation rechargeable battery energy storage devices due to their high theoretical specific capacity and energy density. However, the development of LSBs is largely influenced by the shuttle effect and slow kinetics of lithium polysulfides, which seriously hinder their commercial applications. Based on this, we propose a bimetallic modulating strategy to synthesize carbon tube embedded with Co and Mn bimetals anchored on a nitrogen-doped carbon nanosheet (Co/Mn-GC@N-C) function separator to catalytic polysulfide conversion and enhance the electrochemical performance. Co/Mn-GC@N-C possesses high electrical conductivity and large specific surface area, which can offer a lot of active sites for anchoring polysulfides, stimulating their redox reaction and quickening the electrode reaction kinetics. The comprehensive test results show that the cell with Co/Mn-GC@N-C exhibits a specific discharge capacity of 1215 mAh g-1 at 0.5C and a high Coulombic efficiency of 99.4% after 300 cycles; even the Co/Mn-GC@N-C cell with a high sulfur loading of 6.6 mg cm-2 shows a high area capacity of 5 mAh cm-2. Therefore, this bimetallic modulating strategy provides an option for the design of advanced high-performance lithium-sulfur battery separator materials.
引用
收藏
页码:1087 / 1099
页数:13
相关论文
共 59 条
[1]   Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment [J].
Celik, Evrim ;
Park, Hosik ;
Choi, Hyeongyu ;
Choi, Heechul .
WATER RESEARCH, 2011, 45 (01) :274-282
[2]   Sodium-Ion Battery Materials and Electrochemical Properties Reviewed [J].
Chayambuka, Kudakwashe ;
Mulder, Grietus ;
Danilov, Dmitri L. ;
Notten, Peter H. L. .
ADVANCED ENERGY MATERIALS, 2018, 8 (16)
[3]   Kinetically elevated redox conversion of polysulfides of lithium-sulfur battery using a separator modified with transition metals coordinated g-C3N4 with carbon-conjugated [J].
Chen, Manfang ;
Zhao, Xiaomei ;
Li, Yongfang ;
Zeng, Peng ;
Liu, Hong ;
Yu, Hao ;
Wu, Ming ;
Li, Zhihao ;
Shao, Dingsheng ;
Miao, Changqin ;
Chen, Gairong ;
Shu, Hongbo ;
Pei, Yong ;
Wang, Xianyou .
CHEMICAL ENGINEERING JOURNAL, 2020, 385
[4]   Suppressing the Polysulfide Shuttle Effect by Heteroatom-Doping for High-Performance Lithium-Sulfur Batteries [J].
Chen, Manfang ;
Zhao, Shu ;
Jiang, Shouxin ;
Huang, Cheng ;
Wang, Xianyou ;
Yang, Zhenhua ;
Xiang, Kaixiong ;
Zhang, Yan .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (06) :7545-7557
[5]   Densely integrated Co, N-Codoped Graphene@Carbon nanotube porous hybrids for high-performance lithium-sulfur batteries [J].
Cheng, Dongdong ;
Zhao, Yelin ;
Tang, Xingwei ;
An, Tong ;
Wang, Xin ;
Zhou, Han ;
Zhang, Di ;
Fan, Tongxiang .
CARBON, 2019, 149 :750-759
[6]   Separator Modified by Cobalt-Embedded Carbon Nanosheets Enabling Chemisorption and Catalytic Effects of Polysulfides for High-Energy-Density Lithium-Sulfur Batteries [J].
Cheng, Zhibin ;
Pan, Hui ;
Chen, Jinqing ;
Meng, Xueping ;
Wang, Ruihu .
ADVANCED ENERGY MATERIALS, 2019, 9 (32)
[7]   Facile manufacture technique for lithium-ion batteries composite separator via online construction of fumed SiO2 coating [J].
Ding, Lei ;
Yan, Ning ;
Zhang, Sihang ;
Xu, Ruizhang ;
Wu, Tong ;
Yang, Feng ;
Cao, Ya ;
Xiang, Ming .
MATERIALS & DESIGN, 2022, 215
[8]   Ultrafine Iron Pyrite (FeS2) Nanocrystals Improve Sodium-Sulfur and Lithium-Sulfur Conversion Reactions for Efficient Batteries [J].
Douglas, Anna ;
Carter, Rachel ;
Oakes, Landon ;
Share, Keith ;
Cohn, Adam P. ;
Pint, Cary L. .
ACS NANO, 2015, 9 (11) :11156-11165
[9]   Free-Standing Nanostructured Architecture as a Promising Platform for High-Performance Lithium-Sulfur Batteries [J].
Du, Lingyu ;
Wang, Huimin ;
Yang, Min ;
Liu, Lili ;
Niu, Zhiqiang .
SMALL STRUCTURES, 2020, 1 (03)
[10]   Zn-N Codoped Carbon Nanofiber Interlayer for Anchor and Catalysis of Polysulfides in Lithium-Sulfur Batteries [J].
Fang, Xiaorong ;
Cheng, Pu ;
Sun, Kai ;
Fu, Yujun ;
Liu, Dequan ;
He, Deyan .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (07) :8189-8197