Multi-view dimensionality reduction learning with hierarchical sparse feature selection

被引:1
作者
Guo, Wei [1 ,2 ]
Wang, Zhe [1 ,2 ]
Yang, Hai [2 ]
Du, Wenli [1 ]
机构
[1] East China Univ Sci & Technol, Minist Educ, Key Lab Smart Mfg Energy Chem Proc, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
基金
美国国家科学基金会;
关键词
Multi-view learning; Dimensionality reduction; View selection; Feature selection;
D O I
10.1007/s10489-022-04161-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view data can depict samples from various views and learners can benefit from such complementary information, so it has attracted extensive studies in recent years. However, it always locates in high-dimensional space and brings noisy or redundant views and features into the learning process, which can decrease the performance of the learner. To address the above issue, we propose a novel unsupervised Multi-view Dimensionality Reduction learning framework with Hierarchical Sparse Feature Selection (MvDRHSFS) to learn a low-dimensional subspace by jointly selecting the most informative views and features hierarchically. More specifically, we penalize the projection matrix with Frobenius norm (F-norm) and l(2,1)-norm to select the most informative views and features hierarchically. Under the penalty of the two regularization terms, some projection-based Sigle-view Dimensionality Reduction (SvDR) methods can learn a more meaningful low-dimensional subspace of multi-view data. In practical implementation, we use the regression type of PCA and relax the orthogonal constraint of the projection matrix to learn the low-dimensional subspace in a more flexible way. To find the optimal solution of the proposed learning framework, we derive an effective way to optimize the given formulation and give the theoretical analysis about the convergence for the optimization algorithm. Extensive experiment results on several real-world datasets demonstrate the feasibility and superiority of our proposed learning framework.
引用
收藏
页码:12774 / 12791
页数:18
相关论文
共 50 条
  • [41] Multi-View Unsupervised Feature Selection with Dynamic Sample Space Structure
    Zhang, Leyuan
    Liu, Meiling
    Wang, Rifeng
    Du, Tingting
    Li, Jiaye
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2645 - 2652
  • [42] Structural regularization based discriminative multi-view unsupervised feature selection
    Zhou, Shixuan
    Song, Peng
    Yu, Yanwei
    Zheng, Wenming
    KNOWLEDGE-BASED SYSTEMS, 2023, 272
  • [43] Anchor-guided global view reconstruction for multi-view multi-label feature selection
    Hao, Pingting
    Liu, Kunpeng
    Gao, Wanfu
    INFORMATION SCIENCES, 2024, 679
  • [44] Low-rank tensor based smooth representation learning for multi-view unsupervised feature selection
    Wang, Changjia
    Song, Peng
    Duan, Meng
    Zhou, Shixuan
    Cheng, Yuanbo
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [45] Multi-view Stable Feature Selection with Adaptive Optimization of View Weights
    Cui, Menghan
    Wang, Kaixiang
    Ding, Xiaojian
    Xu, Zihan
    Wang, Xin
    Shi, Pengcheng
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [46] Exploring view-specific label relationships for multi-view multi-label feature selection
    Hao, Pingting
    Ding, Weiping
    Gao, Wanfu
    He, Jialong
    INFORMATION SCIENCES, 2024, 681
  • [47] Multi-view K-means clustering algorithm based on redundant and sparse feature learning
    Kong, Guoping
    Ma, Yingcang
    Xing, Zhiwei
    Xin, Xiaolong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 633
  • [48] Dual-level feature assessment for unsupervised multi-view feature selection with latent space learning
    Wu, Jian-Sheng
    Gong, Jun-Xiao
    Liu, Jing-Xin
    Huang, Wei
    Zheng, Wei-Shi
    INFORMATION SCIENCES, 2024, 670
  • [49] Multi-view classification via Multi-view Partially Common Feature Latent Factor Learning
    Liu, Jian-Wei
    Xie, Hao-Jie
    Lu, Run-Kun
    Luo, Xiong-Lin
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 3323 - 3330
  • [50] Multi-View Unsupervised Feature Selection with Adaptive Similarity and View Weight
    Hou, Chenping
    Nie, Feiping
    Tao, Hong
    Yi, Dongyun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (09) : 1998 - 2011