Puerarin protects the fatty liver from ischemia-reperfusion injury by regulating the PI3K/AKT signaling pathway

被引:0
作者
Yang, Faji [1 ]
Gao, Hengjun [1 ]
Niu, Zheyu [1 ]
Ni, Qingqiang [1 ]
Zhu, Huaqiang [1 ]
Wang, Jianlu [1 ]
Lu, Jun [1 ]
机构
[1] Shandong First Med Univ, Shandong Prov Hosp, Dept Hepatobiliary Surg, Jinan, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Puerarin; Fatty liver; Ischemia-reperfusion injury; Oxidative stress; Apoptosis; ISCHEMIA/REPERFUSION INJURY; TRANSPLANTATION; BRAIN; MICE;
D O I
10.1590/1414-431X2024e13229
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The incidence of non-alcoholic fatty liver (NAFLD) remains high, and many NAFLD patients suffer from severe ischemiareperfusion injury (IRI). Currently, no practical approach can be used to treat IRI. Puerarin plays a vital role in treating multiple diseases, such as NAFLD, stroke, diabetes, and high blood pressure. However, its role in the IRI of the fatty liver is still unclear. We aimed to explore whether puerarin could protect the fatty liver from IRI. C57BL/6J mice were fed with a high-fat diet (HFD) followed by ischemia reperfusion injury. We showed that hepatic IRI was more severe in the fatty liver compared with the normal liver, and puerarin could significantly protect the fatty liver against IRI and alleviate oxidative stress. The PI3K-AKT signaling pathway was activated during IRI, while liver steatosis decreased the level of activation. Puerarin significantly protected the fatty liver from IRI by reactivating the PI3K-AKT signaling pathway. However, LY294002, a PI3K-AKT inhibitor, attenuated the protective effect of puerarin. In conclusion, puerarin could significantly protect the fatty liver against IRI by activating the PI3KAKT signaling pathway.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Pachymic acid protects against cerebral ischemia/reperfusion injury by the PI3K/Akt signaling pathway
    Yingqiao Pang
    Shaozhi Zhu
    Haitao Pei
    Metabolic Brain Disease, 2020, 35 : 673 - 680
  • [22] Piperine protects against myocardial ischemia/reperfusion injury by activating the PI3K/AKT signaling pathway
    Li, Yun-Peng
    Chen, Zhen
    Cai, Yu-Hua
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 21 (04)
  • [23] Pachymic acid protects against cerebral ischemia/reperfusion injury by the PI3K/Akt signaling pathway
    Pang, Yingqiao
    Zhu, Shaozhi
    Pei, Haitao
    METABOLIC BRAIN DISEASE, 2020, 35 (04) : 673 - 680
  • [24] β-Arrestin-2 attenuates hepatic ischemia-reperfusion injury by activating PI3K/Akt signaling
    Chen, Xiaolong
    Zhang, Junbin
    Xia, Long
    Wang, Li
    Li, Hui
    Liu, Huilin
    Zhou, Jing
    Feng, Zhiying
    Jin, Hai
    Yang, JianXu
    Yang, Yang
    Wu, Bin
    Zhang, Lei
    Chen, Guihua
    Wang, Genshu
    AGING-US, 2021, 13 (02): : 2251 - 2263
  • [25] Natural compounds regulate the PI3K/Akt/GSK3β pathway in myocardial ischemia-reperfusion injury
    Ajzashokouhi, Amir Hossein
    Rezaee, Ramin
    Omidkhoda, Navid
    Karimi, Gholamreza
    CELL CYCLE, 2023, 22 (07) : 741 - 757
  • [26] Aloperine protects against cerebral ischemia/reperfusion injury via activating the PI3K/AKT signaling pathway in rats
    Li, Zhimin
    Cao, Xing
    Xiao, Ligen
    Zhou, Ruijiao
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 22 (04)
  • [27] Puerarin protects pancreatic β-cell survival via PI3K/Akt signaling pathway
    Li, Zhipeng
    Shangguan, Zhaoshui
    Liu, Yijie
    Wang, Jihua
    Li, Xuejun
    Yang, Shuyu
    Liu, Suhuan
    JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2014, 53 (01) : 71 - 79
  • [28] Postconditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury via PI3K/Akt pathway
    Wang, Jun-Kuan
    Yu, Li-Na
    Zhang, Feng-Jiang
    Yang, Mei-Juan
    Yu, Jing
    Yan, Min
    Chen, Gao
    BRAIN RESEARCH, 2010, 1357 : 142 - 151
  • [29] Galangin Alleviates Liver Ischemia-Reperfusion Injury in a Rat Model by Mediating the PI3K/AKT Pathway
    Li, Yang
    Tong, Liquan
    Zhang, Jingyan
    Zhang, Yafeng
    Zhang, Feng
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 51 (03) : 1354 - 1363
  • [30] Clemastine Fumarate Protects Against Myocardial Ischemia Reperfusion Injury by Activating the TLR4/PI3K/Akt Signaling Pathway
    Yuan, Xiaoxiao
    Juan, Zhaodong
    Zhang, Rui
    Sun, Xiaotong
    Yan, Ru
    Yue, Feng
    Huang, Yaru
    Yu, Jiacheng
    Xia, Xiaohui
    FRONTIERS IN PHARMACOLOGY, 2020, 11