Transport-driven super-Jeans fragmentation in dynamical star-forming regions

被引:1
|
作者
Li, Guang-Xing [1 ]
机构
[1] Yunnan Univ, South Western Inst Astron Res, Kunming 650600, Peoples R China
关键词
hydrodynamics; instabilities; methods: analytical; stars: formation; galaxies: star formation; ALMA OBSERVATIONS; MASSIVE STARS; TURBULENCE; STABILITY;
D O I
10.1093/mnras/stae384
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Jeans criterion is one cornerstone in our understanding of gravitational fragmentation. A critical limitation of the Jeans criterion is that the background density is assumed to be a constant, which is often not true in dynamic conditions such as star-forming regions. For example, during the formation phase of the high-density gas filaments in a molecular cloud, a density increase rate rho(center dot) implies a mass accumulation time of t(acc)= rho/rho(center dot)= -rho(del & sdot;(rho v(->)))(-1). The system is non-stationary when the mass accumulation time becomes comparable to the free-fall time t(ff)=1/G rho. We study fragmentation in non-stationary settings, and find that accretion can significantly increase in the characteristic mass of gravitational fragmentation (lambda(Jeans, aac) = lambda(Jeans)(1 + t(ff)/t(acc))(1/3), m(Jeans,acc)= m(Jeans)(1+t(ff)/t(acc))). In massive star-forming regions, this mechanism of transport-driven super-Jeans fragmentation can contribute to the formation of massive stars by causing order-of-magnitude increases in the mass of the fragments.
引用
收藏
页码:7333 / 7337
页数:5
相关论文
共 50 条
  • [31] A Multiwavelength Look at Galactic Massive Star-forming Regions
    Binder, Breanna A.
    Povich, Matthew S.
    ASTROPHYSICAL JOURNAL, 2018, 864 (02)
  • [32] THE INTERPLAY OF TURBULENCE AND MAGNETIC FIELDS IN STAR-FORMING REGIONS: SIMULATIONS AND OBSERVATIONS
    Kirk, Helen
    Johnstone, Doug
    Basu, Shantanu
    ASTROPHYSICAL JOURNAL, 2009, 699 (02) : 1433 - 1453
  • [33] The evolution of phase space densities in star-forming regions
    Blaylock-Squibbs, George A.
    Parker, Richard J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 519 (03) : 3643 - 3655
  • [34] Star-forming regions in dwarf galaxies of the local volume
    Kaisin, S. S.
    Karachentsev, I. D.
    ASTROPHYSICAL BULLETIN, 2013, 68 (04) : 381 - 402
  • [35] Observations of star-forming regions with the Midcourse Space Experiment
    Kraemer, KE
    Shipman, RF
    Price, SD
    Mizuno, DR
    Kuchar, T
    Carey, SJ
    ASTRONOMICAL JOURNAL, 2003, 126 (03) : 1423 - 1450
  • [36] Outflow and infall in a sample of massive star-forming regions
    Klaassen, P. D.
    Wilson, C. D.
    ASTROPHYSICAL JOURNAL, 2007, 663 (02) : 1092 - 1102
  • [37] Investigating the structure of star-forming regions using INDICATE
    Blaylock-Squibbs, George A.
    Parker, Richard J.
    Buckner, Anne S. M.
    Gudel, Manuel
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 510 (02) : 2864 - 2882
  • [38] Star-forming regions in dwarf galaxies of the local volume
    S. S. Kaisin
    I. D. Karachentsev
    Astrophysical Bulletin, 2013, 68 : 381 - 402
  • [39] FRAGMENTATION IN DUSTY LOW-METALLICITY STAR-FORMING HALOS
    Meece, Gregory R.
    Smith, Britton D.
    O'Shea, Brian W.
    ASTROPHYSICAL JOURNAL, 2014, 783 (02)
  • [40] Deuterated ammonia in Galactic massive star-forming regions
    Li, Yuqiang
    Wang, Junzhi
    Li, Juan
    Liu, Shu
    Luo, Qiuyi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 512 (04) : 4934 - 4947