Functional impact of multi-omic interactions in lung cancer

被引:0
作者
Diaz-Campos, Miguel Angel [1 ]
Vasquez-Arriaga, Jorge [1 ]
Ochoa, Soledad [1 ,2 ]
Hernandez-Lemus, Enrique [1 ,3 ]
机构
[1] Natl Inst Genom Med, Computat Genom Div, Mexico City, Mexico
[2] Cedars Sinai Med Ctr, Dept Obstet & Gynecol, Los Angeles, CA USA
[3] Univ Nacl Autonoma Mexico, Ctr Complex Sci, Mexico City, Mexico
关键词
lung adenocarcinoma; lung squamous cell carcinoma; multiomics; mutual information; network construction; computational analysis; RIBOSOMAL-PROTEIN S6; DOWN-REGULATION; R PACKAGE; METHYLATION; EXPRESSION; RNA; PROLIFERATION; CENTRALITY; MIR-125B; GROWTH;
D O I
10.3389/fgene.2024.1282241
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Lung tumors are a leading cause of cancer-related death worldwide. Lung cancers are highly heterogeneous on their phenotypes, both at the cellular and molecular levels. Efforts to better understand the biological origins and outcomes of lung cancer in terms of this enormous variability often require of high-throughput experimental techniques paired with advanced data analytics. Anticipated advancements in multi-omic methodologies hold potential to reveal a broader molecular perspective of these tumors. This study introduces a theoretical and computational framework for generating network models depicting regulatory constraints on biological functions in a semi-automated way. The approach successfully identifies enriched functions in analyzed omics data, focusing on Adenocarcinoma (LUAD) and Squamous cell carcinoma (LUSC, a type of NSCLC) in the lung. Valuable information about novel regulatory characteristics, supported by robust biological reasoning, is illustrated, for instance by considering the role of genes, miRNAs and CpG sites associated with NSCLC, both novel and previously reported. Utilizing multi-omic regulatory networks, we constructed robust models elucidating omics data interconnectedness, enabling systematic generation of mechanistic hypotheses. These findings offer insights into complex regulatory mechanisms underlying these cancer types, paving the way for further exploring their molecular complexity.
引用
收藏
页数:16
相关论文
共 105 条
  • [1] Multi-omics data integration by generative adversarial network
    Ahmed, Khandakar Tanvir
    Sun, Jiao
    Cheng, Sze
    Yong, Jeongsik
    Zhang, Wei
    [J]. BIOINFORMATICS, 2022, 38 (01) : 179 - 186
  • [2] Recent advances in non-small cell lung cancer targeted therapy; an update review
    Araghi, Mahmood
    Mannani, Reza
    Maleki, Ali Heidarnejad
    Hamidi, Adel
    Rostami, Samaneh
    Safa, Salar Hozhabri
    Faramarzi, Fatemeh
    Khorasani, Sahar
    Alimohammadi, Mina
    Tahmasebi, Safa
    Akhavan-Sigari, Reza
    [J]. CANCER CELL INTERNATIONAL, 2023, 23 (01)
  • [3] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
  • [4] The Role and Regulation of Thromboxane A2 Signaling in Cancer-Trojan Horses and Misdirection
    Ashton, Anthony W.
    Zhang, Yunjia
    Cazzolli, Rosanna
    Honn, Kenneth, V
    [J]. MOLECULES, 2022, 27 (19):
  • [5] Computing topological parameters of biological networks
    Assenov, Yassen
    Ramirez, Fidel
    Schelhorn, Sven-Eric
    Lengauer, Thomas
    Albrecht, Mario
    [J]. BIOINFORMATICS, 2008, 24 (02) : 282 - 284
  • [6] Centrality and network flow
    Borgatti, SP
    [J]. SOCIAL NETWORKS, 2005, 27 (01) : 55 - 71
  • [7] miRDriver: A Tool to Infer Copy Number Derived miRNA-Gene Networks in Cancer
    Bose, Banabithi
    Bozdagt, Serdar
    [J]. ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, 2019, : 366 - 375
  • [8] Functional role of eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) in NSCLC
    Cao, Yueyu
    Wei, Mengdan
    Li, Bing
    Liu, Yali
    Lu, Ying
    Tang, Zhipeng
    Lu, Tianbao
    Yin, Yujiao
    Qin, Zhiqiang
    Xu, Zengguang
    [J]. ONCOTARGET, 2016, 7 (17) : 24242 - 24251
  • [9] The Gene Ontology resource: enriching a GOld mine
    Carbon, Seth
    Douglass, Eric
    Good, Benjamin M.
    Unni, Deepak R.
    Harris, Nomi L.
    Mungall, Christopher J.
    Basu, Siddartha
    Chisholm, Rex L.
    Dodson, Robert J.
    Hartline, Eric
    Fey, Petra
    Thomas, Paul D.
    Albou, Laurent-Philippe
    Ebert, Dustin
    Kesling, Michael J.
    Mi, Huaiyu
    Muruganujan, Anushya
    Huang, Xiaosong
    Mushayahama, Tremayne
    LaBonte, Sandra A.
    Siegele, Deborah A.
    Antonazzo, Giulia
    Attrill, Helen
    Brown, Nick H.
    Garapati, Phani
    Marygold, Steven J.
    Trovisco, Vitor
    Dos Santos, Gil
    Falls, Kathleen
    Tabone, Christopher
    Zhou, Pinglei
    Goodman, Joshua L.
    Strelets, Victor B.
    Thurmond, Jim
    Garmiri, Penelope
    Ishtiaq, Rizwan
    Rodriguez-Lopez, Milagros
    Acencio, Marcio L.
    Kuiper, Martin
    Laegreid, Astrid
    Logie, Colin
    Lovering, Ruth C.
    Kramarz, Barbara
    Saverimuttu, Shirin C. C.
    Pinheiro, Sandra M.
    Gunn, Heather
    Su, Renzhi
    Thurlow, Katherine E.
    Chibucos, Marcus
    Giglio, Michelle
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D325 - D334
  • [10] Integrating multi-omics data through deep learning for accurate cancer prognosis prediction
    Chai, Hua
    Zhou, Xiang
    Zhang, Zhongyue
    Rao, Jiahua
    Zhao, Huiying
    Yang, Yuedong
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134