An ultrasensitive and broadband transparent ultrasound transducer for ultrasound and photoacoustic imaging in-vivo

被引:43
作者
Cho, Seonghee [1 ,2 ]
Kim, Minsu [2 ,3 ]
Ahn, Joongho [2 ,3 ]
Kim, Yeonggeun [2 ,3 ]
Lim, Junha [4 ]
Park, Jeongwoo [2 ,3 ]
Kim, Hyung Ham [1 ,2 ,3 ]
Kim, Won Jong [4 ,5 ]
Kim, Chulhong [1 ,2 ,3 ,5 ,6 ]
机构
[1] Pohang Univ Sci & Technol, Dept Elect Engn, Pohang, South Korea
[2] Pohang Univ Sci & Technol, Med Device Innovat Ctr, Pohang, South Korea
[3] Pohang Univ Sci & Technol, Dept Convergence IT Engn, Pohang, South Korea
[4] Pohang Univ Sci & Technol, Dept Chem, Pohang, South Korea
[5] Pohang Univ Sci & Technol, Dept Med Sci & Engn, Pohang, South Korea
[6] Pohang Univ Sci & Technol, Dept Mech Engn, Pohang, South Korea
基金
新加坡国家研究基金会;
关键词
DESIGN; MICROSCOPY; EFFICIENT;
D O I
10.1038/s41467-024-45273-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transparent ultrasound transducers (TUTs) can seamlessly integrate optical and ultrasound components, but acoustic impedance mismatch prohibits existing TUTs from being practical substitutes for conventional opaque ultrasound transducers. Here, we propose a transparent adhesive based on a silicon dioxide-epoxy composite to fabricate matching and backing layers with acoustic impedances of 7.5 and 4-6 MRayl, respectively. By employing these layers, we develop an ultrasensitive, broadband TUT with 63% bandwidth at a single resonance frequency and high optical transparency ( > 80%), comparable to conventional opaque ultrasound transducers. Our TUT maximises both acoustic power and transfer efficiency with maximal spectrum flatness while minimising ringdowns. This enables high contrast and high-definition dual-modal ultrasound and photoacoustic imaging in live animals and humans. Both modalities reach an imaging depth of > 15 mm, with depth-to-resolution ratios exceeding 500 and 370, respectively. This development sets a new standard for TUTs, advancing the possibilities of sensor fusion.
引用
收藏
页数:15
相关论文
共 48 条
[41]   A Review of Transparent Sensors for Photoacoustic Imaging Applications [J].
Ren, Danyang ;
Sun, Yizhe ;
Shi, Junhui ;
Chen, Ruimin .
PHOTONICS, 2021, 8 (08)
[42]   Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light [J].
Ruan, Haowen ;
Jang, Mooseok ;
Yang, Changhuei .
NATURE COMMUNICATIONS, 2015, 6
[43]  
Sette D, 2017, PROC IEEE MICR ELECT, P793, DOI 10.1109/MEMSYS.2017.7863527
[44]   A CALCULATION SCHEME FOR THE OPTIMUM DESIGN OF ULTRASONIC TRANSDUCERS [J].
VANKERVEL, SJH ;
THIJSSEN, JM .
ULTRASONICS, 1983, 21 (03) :134-140
[45]   High frequency properties of passive materials for ultrasonic transducers [J].
Wang, HF ;
Ritter, T ;
Cao, WW ;
Shung, KK .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2001, 48 (01) :78-84
[46]   Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs [J].
Wang, Lihong V. ;
Hu, Song .
SCIENCE, 2012, 335 (6075) :1458-1462
[47]   Noise-equivalent sensitivity of photoacoustics [J].
Winkler, Amy M. ;
Maslov, Konstantin ;
Wang, Lihong V. .
JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (09)
[48]   Realtime Photoacoustic Microscopy of Murine Cardiovascular Dynamics [J].
Zemp, R. J. ;
Song, L. ;
Bitton, R. ;
Shung, K. K. ;
Wang, L. V. .
OPTICS EXPRESS, 2008, 16 (22) :18551-18556