Longitudinal optical conductivity of graphene in van der Waals heterostructures composed of graphene and transition metal dichalcogenides

被引:0
作者
Cui, Ruoyang [1 ]
Li, Yaojin [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Phys, Xian 710049, Peoples R China
[2] Lanzhou Univ Technol, Sch Sci, Dept Phys, Lanzhou 730050, Peoples R China
关键词
longitudinal optical conductivity; Rashba spin-orbit coupling; graphene; heterostructure; ELECTRONIC-PROPERTIES; INTERFACE; TRANSPORT; MOS2;
D O I
10.1016/j.physleta.2023.129303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Placing and twisting graphene on transition metal dichalcogenides (TMDC) forms a van der Waals (vdW) heterostructure. The occurrence of Zeeman splitting and Rashba spin-orbit coupling (SOC) changes graphene's linear dispersion and conductivity. Hence, this paper studies the dependence of graphene's longitudinal optical conductivity on Rashba SOC, the twist-angle and temperature. At zero temperature, a main conductivity peak exists. When Rashba SOC increases, a second peak occurs, with both extremes presenting an enhanced height and width, and the frequencies where the two peaks arise will increase because the energy gap and the possibility of electron transition increase. Altering the twist-angle from 0 to 30 circle, the conductivity is primarily affected by chalcogen atoms. Moreover, when temperature increases to room temperature, besides a Drude peak due to the thermal excitation, a new band arises in the conductivity owing to the joint effect of the thermal transition and the photon transition
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Infrared photodetectors based on graphene van der Waals heterostructures
    Ryzhii, V.
    Ryzhii, M.
    Svintsov, D.
    Leiman, V.
    Mitin, V.
    Shur, M. S.
    Otsuji, T.
    INFRARED PHYSICS & TECHNOLOGY, 2017, 84 : 72 - 81
  • [22] Two-dimensional van der Waals graphene/transition metal nitride heterostructures as promising high-performance nanodevices
    Pham, Khang D.
    Nguyen, Cuong Q.
    Nguyen, C., V
    Cuong, Pham, V
    Hieu, Nguyen, V
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (12) : 5509 - 5516
  • [23] Plasmon excitation in MoS2/graphene van der waals heterostructures
    Liu, Dan-Dan
    Zhang, Zhi-Yin
    Guo, Peng
    Wang, Jian-Jun
    PRAMANA-JOURNAL OF PHYSICS, 2021, 96 (01):
  • [24] Interfacial Thermal Conductance across Graphene/MoS2 van der Waals Heterostructures
    Wu, Shuang
    Wang, Jifen
    Xie, Huaqing
    Guo, Zhixiong
    ENERGIES, 2020, 13 (21)
  • [25] Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures
    Xia, Congxin
    Xue, Bin
    Wang, Tianxing
    Peng, Yuting
    Jia, Yu
    APPLIED PHYSICS LETTERS, 2015, 107 (19)
  • [26] Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures
    Wang, Jingang
    Mu, Xijiao
    Sun, Mengtao
    Mu, Tingjie
    APPLIED MATERIALS TODAY, 2019, 16 : 1 - 20
  • [27] Enhanced organic gas sensing performance of Borophene/Graphene van der Waals heterostructures via transition metal doping
    Wang, Chao-Bo
    Tian, Yu-Ping
    Duan, Jia-Xing
    Zhang, Bin-Yuan
    Gong, Wei-Jiang
    SURFACES AND INTERFACES, 2023, 43
  • [28] Tunable band gaps in graphene/GaN van der Waals heterostructures
    Huang, Le
    Yue, Qu
    Kang, Jun
    Li, Yan
    Li, Jingbo
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (29)
  • [29] Graphene van der Waals heterostructures for high-performance photodetectors
    Geng, Huijuan
    Yuan, Di
    Yang, Zhi
    Tang, Zhenjie
    Zhang, Xiwei
    Yang, Kui
    Su, Yanjie
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (36) : 11056 - 11067
  • [30] Electronic and optical properties of van der Waals vertical heterostructures based on two-dimensional transition metal dichalcogenides: First-principles calculations
    Ren, Kai
    Sun, Minglei
    Luo, Yi
    Wang, Sake
    Xu, Yujing
    Yu, Jin
    Tang, Wencheng
    PHYSICS LETTERS A, 2019, 383 (13) : 1487 - 1492