Artificial intelligence-supported diabetic retinopathy screening in Tanzania: rationale and design of a randomised controlled trial

被引:4
作者
Cleland, Charles R. [1 ,2 ]
Bascaran, Covadonga [1 ]
Makupa, William [2 ]
Shilio, Bernadetha [3 ]
Sandi, Frank A. [5 ]
Philippin, Heiko [1 ,4 ]
Marques, Ana Patricia [1 ]
Egan, Catherine [6 ,7 ]
Tufail, Adnan [6 ,7 ]
Keane, Pearse A. [6 ,7 ]
Denniston, Alastair K. [6 ,7 ,8 ]
Macleod, David [9 ]
Burton, Matthew J. [1 ,6 ,7 ]
机构
[1] London Sch Hyg & Trop Med, Int Ctr Eye Hlth, London, England
[2] Kilimanjaro Christian Med Ctr, Eye Dept, Moshi, Tanzania
[3] Minist Hlth, Community Dev Gender Elderly & Children, Dodoma, Tanzania
[4] Univ Freiburg, Eye Ctr, Fac Med, Freiburg, Germany
[5] Univ Dodoma, Sch Med & Nursing, Dept Ophthalmol, Dodoma, Tanzania
[6] UCL, Moorfields Hosp NHS Fdn Trust, Biomed Res Ctr BRC Ophthalmol, Natl Inst Hlth & Care Res NIHR, London, England
[7] Inst Ophthalmol, London, England
[8] Natl Inst Hlth & Care Res, Birmingham Biomed Res Ctr, Birmingham, England
[9] London Sch Hyg & Trop Med, Dept Infect Dis Epidemiol, London, England
来源
BMJ OPEN | 2024年 / 14卷 / 01期
关键词
diabetic retinopathy; public health; clinical trial; ophthalmology; VALIDATION; AFRICA; CARE;
D O I
10.1136/bmjopen-2023-075055
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction Globally, diabetic retinopathy (DR) is a major cause of blindness. Sub-Saharan Africa is projected to see the largest proportionate increase in the number of people living with diabetes over the next two decades. Screening for DR is recommended to prevent sight loss; however, in many low and middle-income countries, because of a lack of specialist eye care staff, current screening services for DR are not optimal. The use of artificial intelligence (AI) for DR screening, which automates the grading of retinal photographs and provides a point-of-screening result, offers an innovative potential solution to improve DR screening in Tanzania.Methods and analysis We will test the hypothesis that AI-supported DR screening increases the proportion of persons with true referable DR who attend the central ophthalmology clinic following referral after screening in a single-masked, parallel group, individually randomised controlled trial. Participants (2364) will be randomised (1:1 ratio) to either AI-supported or the standard of care DR screening pathway. Participants allocated to the AI-supported screening pathway will receive their result followed by point-of-screening counselling immediately after retinal image capture. Participants in the standard of care arm will receive their result and counselling by phone once the retinal images have been graded in the usual way (typically after 2-4 weeks). The primary outcome is the proportion of persons with true referable DR attending the central ophthalmology clinic within 8 weeks of screening. Secondary outcomes, by trial arm, include the proportion of persons attending the central ophthalmology clinic out of all those referred, sensitivity and specificity, number of false positive referrals, acceptability and fidelity of AI-supported screening.Ethics and dissemination The London School of Hygiene & Tropical Medicine, Kilimanjaro Christian Medical Centre and Tanzanian National Institute of Medical Research ethics committees have approved the trial. The results will be submitted to peer-reviewed journals for publication.Trial registration number ISRCTN18317152.
引用
收藏
页数:10
相关论文
共 24 条
[1]   Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices [J].
Abramoff, Michael D. ;
Lavin, Philip T. ;
Birch, Michele ;
Shah, Nilay ;
Folk, James C. .
NPJ DIGITAL MEDICINE, 2018, 1
[2]   Diabetes in sub-Saharan Africa: from clinical care to health policy [J].
Atun, Rifat ;
Davies, Justine I. ;
Gale, Edwin A. M. ;
Barnighausen, Till ;
Beran, David ;
Kengne, Andre Pascal ;
Levitt, Naomi S. ;
Mangugu, Florence W. ;
Nyirenda, Moffat J. ;
Ogle, Graham D. ;
Ramaiya, Kaushik ;
Sewankambo, Nelson K. ;
Sobngwi, Eugene ;
Tesfaye, Solomon ;
Yudkin, John S. ;
Basu, Sanjay ;
Bommer, Christian ;
Heesemann, Esther ;
Manne-Goehler, Jennifer ;
Postolovska, Iryna ;
Sagalova, Vera ;
Vollmer, Sebastian ;
Abbas, Zulfiqarali G. ;
Ammon, Benjamin ;
Angamo, Mulugeta Terekegn ;
Annamreddi, Akhila ;
Awasthi, Ananya ;
Besancon, Stephane ;
Bhadriraju, Sudhamayi ;
Binagwaho, Agnes ;
Burgess, Philip I. ;
Burton, Matthew J. ;
Chai, Jeanne ;
Chilunga, Felix P. ;
Chipendo, Portia ;
Conn, Anna ;
Joel, Dipesalema R. ;
Eagan, Arielle W. ;
Gishoma, Crispin ;
Ho, Julius ;
Jong, Simcha ;
Kakarmath, Sujay S. ;
Khan, Yasmin ;
Kharel, Ramu ;
Kyle, Michael A. ;
Lee, Seitetz C. ;
Lichtman, Amos ;
Malm, Carl P. ;
Mbaye, Maimouna N. ;
Muhimpundu, Marie A. .
LANCET DIABETES & ENDOCRINOLOGY, 2017, 5 (08) :622-667
[3]  
Bashir R., 2021, Eye News, P27
[4]   Development and Validation of a Smartphone-Based Visual Acuity Test (Peek Acuity) for Clinical Practice and Community-Based Fieldwork [J].
Bastawrous, Andrew ;
Rono, Hillary K. ;
Livingstone, Iain A. T. ;
Weiss, Helen A. ;
Jordan, Stewart ;
Kuper, Hannah ;
Burton, Matthew J. .
JAMA OPHTHALMOLOGY, 2015, 133 (08) :930-937
[5]   Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study [J].
Bellemo, Valentina ;
Lim, Zhan W. ;
Lim, Gilbert ;
Nguyen, Quang D. ;
Xie, Yuchen ;
Yip, Michelle Y. T. ;
Hamzah, Haslina ;
Ho, Jinyi ;
Lee, Xin Q. ;
Hsu, Wynne ;
Lee, Mong L. ;
Musonda, Lillian ;
Chandran, Manju ;
Chipalo-Mutati, Grace ;
Muma, Mulenga ;
Tan, Gavin S. W. ;
Sivaprasad, Sobha ;
Menon, Geeta ;
Wong, Tien Y. ;
Ting, Daniel S. W. .
LANCET DIGITAL HEALTH, 2019, 1 (01) :E35-E44
[6]   Validation of the A&D BP UA-651 device for home blood pressure measurement according to the European Society of Hypertension International Protocol revision 2010 [J].
Benetti, Elisabetta ;
Fania, Claudio ;
Palatini, Paolo .
BLOOD PRESSURE MONITORING, 2014, 19 (01) :50-53
[7]   The Lancet Global Health Commission on Global Eye Health: vision beyond 2020 [J].
Burton, Matthew J. ;
Ramke, Jacqueline ;
Marques, Ana Patricia ;
Bourne, Rupert R. A. ;
Congdon, Nathan ;
Jones, Iain ;
Tong, Brandon A. M. Ah ;
Arunga, Simon ;
Bachani, Damodar ;
Bascaran, Covadonga ;
Bastawrous, Andrew ;
Blanchet, Karl ;
Braithwaite, Tasanee ;
Buchan, John C. ;
Cairns, John ;
Cama, Anasaini ;
Chagunda, Margarida ;
Chuluunkhuu, Chimgee ;
Cooper, Andrew ;
Crofts-Lawrence, Jessica ;
Dean, William H. ;
Denniston, Alastair K. ;
Ehrlich, Joshua R. ;
Emerson, Paul M. ;
Evans, Jennifer R. ;
Frick, Kevin D. ;
Friedman, David S. ;
Furtado, Joao M. ;
Gichangi, Michael M. ;
Gichuhi, Stephen ;
Gilbert, Suzanne S. ;
Gurung, Reeta ;
Habtamu, Esmael ;
Holland, Peter ;
Jonas, Jost B. ;
Keane, Pearse A. ;
Keay, Lisa ;
Khanna, Rohit C. ;
Khaw, Peng Tee ;
Kuper, Hannah ;
Kyari, Fatima ;
Lansingh, Van C. ;
Mactaggart, Islay ;
Mafwiri, Milka M. ;
Mathenge, Wanjiku ;
McCormick, Ian ;
Morjaria, Priya ;
Mowatt, Lizette ;
Muirhead, Debbie ;
Murthy, Gudlavalleti V. S. .
LANCET GLOBAL HEALTH, 2021, 9 (04) :E489-E551
[8]   Artificial intelligence for diabetic retinopathy in low-income and middle-income countries: a scoping review [J].
Cleland, Charles R. ;
Rwiza, Justus ;
Evans, Jennifer R. ;
Gordon, Iris ;
MacLeod, David ;
Burton, Matthew J. ;
Bascaran, Covadonga .
BMJ OPEN DIABETES RESEARCH & CARE, 2023, 11 (04)
[9]   Diabetic retinopathy in Tanzania: prevalence and risk factors at entry into a regional screening programme [J].
Cleland, Charles R. ;
Burton, Matthew J. ;
Hall, Claudette ;
Hall, Anthony ;
Courtright, Paul ;
Makupa, William U. ;
Philippin, Heiko .
TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2016, 21 (03) :417-426
[10]  
eyris, EyRIS Pte Ltd