Photonics approaches to the implementation of neuromorphic computing

被引:1
|
作者
Musorin, A. I. [1 ]
Shorokhov, A. S. [1 ]
Chezhegov, A. A. [1 ]
Baluyan, T. G. [1 ]
Safronov, K. R. [1 ]
Chetvertukhin, A. V. [1 ]
Grunin, A. A. [1 ]
Fedyanin, A. A. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Phys, Leninskie Gory 1,Str 2, Moscow 119991, Russia
关键词
photonic computing; neural networks; optical coprocessor; photonic tensor computing; optical Fourier transform; integrated photo-nics; Mach +/- Zehnder interferometer; ring resonators; waveguides; DESIGN;
D O I
10.3367/UFNr.2023.07.039505
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
physical limitations on the operation speed of electronic devices has motivated the search for alternative ways to process information. The past few years have seen the development of neuromorphic photonics-a branch of photonics where the physics of optical and optoelectronic devices is combined with mathematical algorithms of artificial neural networks. Such a symbiosis allows certain classes of computation prob,,lems, including some involving artificial intelligence, to be solved with greater speed and higher energy efficiency than can be reached with electronic devices based on the von Neumann architecture. We review optical analog computing, photonic neural networks, and methods of matrix multiplication by optical means, and discuss the advantages and disadvantages of existing approaches.
引用
收藏
页码:1284 / 1297
页数:14
相关论文
共 50 条
  • [21] Universal Linear Optics Revisited: New Perspectives for Neuromorphic Computing With Silicon Photonics
    Giamougiannis, George
    Tsakyridis, Apostolos
    Moralis-Pegios, Miltiadis
    Totovic, Angelina R.
    Kirtas, Manos
    Passalis, Nikolaos
    Tefas, Anastasios
    Lazovsky, David
    Pleros, Nikos
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2023, 29 (02)
  • [22] Machine Learning With Neuromorphic Photonics
    de Lima, Thomas Ferreira
    Peng, Hsuan-Tung
    Tait, Alexander N.
    Nahmias, Mitchell A.
    Miller, Heidi B.
    Shastri, Bhavin J.
    Prucnal, Paul R.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (05) : 1515 - 1534
  • [23] Memristive Circuit Implementation of Caenorhabditis Elegans Mechanism for Neuromorphic Computing
    Chen, Hegan
    Hong, Qinghui
    Wang, Zhongrui
    Wang, Chunhua
    Zeng, Xiangxiang
    Zhang, Jiliang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12015 - 12026
  • [24] Neuromorphic Photonics for Deep Learning
    Bangari, V.
    Marquez, B. A.
    Tait, A. N.
    Nahmias, M. A.
    de Lima, T. Ferreira
    Peng, H. -T.
    Prucnal, P. R.
    Shastri, B. J.
    2019 IEEE PHOTONICS CONFERENCE (IPC), 2019,
  • [25] Multiwavelength Neuromorphic Silicon Photonics
    Shastri, Bhavin J.
    Tait, Alexander N.
    Nahmias, Mitchell A.
    de Lima, Thomas Ferreira
    Peng, Hsuan-Tung
    Prucnal, Paul R.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [26] Special Topic on Nonvolatile Memory for Efficient Implementation of Neural/Neuromorphic Computing
    Yu, Shimeng
    IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2019, 5 (01):
  • [27] Leveraging volatile memristors in neuromorphic computing: from materials to system implementation
    Moon, Taehwan
    Soh, Keunho
    Kim, Jong Sung
    Kim, Ji Eun
    Chun, Suk Yeop
    Cho, Kyungjune
    Yang, J. Joshua
    Yoon, Jung Ho
    MATERIALS HORIZONS, 2024, : 4840 - 4866
  • [28] Silicon photonics for neuromorphic information processing
    Bienstman, Peter
    Dambre, Joni
    Katumba, Andrew
    Freiberger, Matthias
    Laporte, Floris
    Lugnan, Alessio
    OPTICAL DATA SCIENCE: TRENDS SHAPING THE FUTURE OF PHOTONICS, 2018, 10551
  • [29] Neuromorphic Silicon Photonics for Artificial Intelligence
    Marquez, Bicky A.
    Huang, Chaoran
    Prucnal, Paul R.
    Shastri, Bhavin J.
    SILICON PHOTONICS IV: INNOVATIVE FRONTIERS, 2021, 139 : 417 - 447
  • [30] Neuromorphic Photonics for Digital Signal Processing
    De Marinis, L.
    Roumpos, I.
    Andriolli, N.
    Moralis-Pegios, M.
    Pleros, N.
    Contestabile, G.
    2023 IEEE PHOTONICS CONFERENCE, IPC, 2023,