Influence of novel carbon sources on microstructure and properties of (Ti0.2Zr0.2Hf0.2Ta0.2Nb0.2)C high-entropy carbide ceramic

被引:6
|
作者
Li, Saisai [1 ]
Wu, Qianfang [1 ]
Zhan, Jie [2 ]
Chen, Ruoyu [3 ,4 ]
Mao, Aiqin [1 ]
Zheng, Cuihong [1 ]
Wen, Haiming [4 ]
机构
[1] Anhui Univ Technol, Sch Mat Sci & Engn, Maanshan 243002, Anhui, Peoples R China
[2] China Nucl Power Technol Res Inst Co Ltd, Shenzhen 518028, Peoples R China
[3] Anhui Univ Technol, Sch Met Engn, Maanshan 243002, Anhui, Peoples R China
[4] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA
关键词
High-entropy carbide; Carbon sources; Graphitic carbon spheres; Microstructure; Properties; MECHANICAL-PROPERTIES; EVOLUTION; SPHERES;
D O I
10.1016/j.jeurceramsoc.2023.11.023
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A set of (Ti0.2Zr0.2Hf0.2Ta0.2Nb0.2)C high-entropy carbide (HEC) ceramic samples were produced via spark plasma sintering (SPS) at a temperature of 1900 degrees C utilizing synthesized carbide powders. The carbide powders were synthesized via carbothermal reduction and derived from various carbon sources including carbon black, carbon microspheres, flake graphite, and graphitic carbon spheres. The impact of the different carbon sources was evaluated, for the first time, on the HEC's phase composition, microstructure, mechanical properties, and oxidation behavior. Results show that the HEC prepared using graphitic carbon spheres had a single-phase rock salt structure, with an average grain size of approximately 770 nm, which was smaller than that of HEC samples derived from the other carbon sources, due to its lower oxygen content, better dispersion, and higher chemical reactivity. Additionally, these HEC samples manufactured using graphitic carbon spheres exhibited 98.9% relative density, 20.39 GPa hardness, 4.5 +/- 0.6 MPa & sdot;m1/2 fracture toughness, and excellent oxidation resistance. Therefore, by optimizing the reactivity and dispersion of carbon sources, high-performance HEC ceramics can be created.
引用
收藏
页码:1890 / 1897
页数:8
相关论文
共 50 条
  • [1] Discovery of the High-Entropy Carbide Ceramic Topological Superconductor Candidate (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C
    Zeng, Lingyong
    Wang, Zequan
    Song, Jing
    Lin, Gaoting
    Guo, Ruixin
    Luo, Si-Chun
    Guo, Shu
    Li, Kuan
    Yu, Peifeng
    Zhang, Chao
    Guo, Wei-Ming
    Ma, Jie
    Hou, Yusheng
    Luo, Huixia
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (40)
  • [2] Diffusion bonding of (Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)C high-entropy ceramic with metallic Ni foil
    Mu, R. J.
    Yang, Z. W.
    Niu, S. Y.
    Sun, K. B.
    Wang, Y.
    Wang, D. P.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (15) : 7478 - 7487
  • [3] Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C at 1400-1600 °C
    Wang, Haoxuan
    Han, Xu
    Liu, Wen
    Wang, Yiguang
    CERAMICS INTERNATIONAL, 2021, 47 (08) : 10848 - 10854
  • [4] Pressureless sintering and properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics: The effect of pyrolytic carbon
    Yu, Duo
    Yin, Jie
    Zhang, Buhao
    Liu, Xuejian
    Reece, Michael J.
    Liu, Wei
    Huang, Zhengren
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (06) : 3823 - 3831
  • [5] Prediction of Mechanical Properties of High-Entropy Carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with the Use of Machine Learning Potential
    Pikalova, N. S.
    Balyakin, I. A.
    Yuryev, A. A.
    Rempel, A. A.
    DOKLADY PHYSICAL CHEMISTRY, 2024, 514 (01) : 9 - 14
  • [6] (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity
    Cui, Bai (bcui3@unl.edu), 1600, Blackwell Publishing Inc. (101):
  • [7] (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity
    Yan, Xueliang
    Constantin, Loic
    Lu, Yongfeng
    Silvain, Jean-Francois
    Nastasi, Michael
    Cui, Bai
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2018, 101 (10) : 4486 - 4491
  • [8] Exploring radiation damage in (Hf0.2Zr0.2Ta0.2Ti0.2Nb0.2)C high-entropy carbide ceramic: Integrating experimental and atomistic investigations
    Zhang, Gaowei
    Daghbouj, Nabil
    Almotasem, A. T.
    Fang, Zhongqiang
    Wang, Tao
    Zhang, Jian
    Zhang, Tongming
    Li, Jun
    Zhou, Junjun
    Xu, Shuai
    Wang, Renda
    Wu, Lu
    Ge, Fangfang
    Polcar, Tomas
    Han, Wentuo
    Li, Bingsheng
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2024, 123
  • [9] First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic
    Ye, Beilin
    Wen, Tongqi
    Huang, Kehan
    Wang, Cai-Zhuang
    Chu, Yanhui
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (07) : 4344 - 4352
  • [10] Electromagnetic wave absorbing properties of TMCs(TM=Ti, Zr, Hf, Nb and Ta) and high entropy(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C
    Yanchun Zhou
    Biao Zhao
    Heng Chen
    Huimin Xiang
    Fu-Zi Dai
    Shijiang Wu
    Wei Xu
    JournalofMaterialsScience&Technology, 2021, 74 (15) : 105 - 118