A Least Squares Fitting Method for Uncertain Parameter Estimation in Solidification Model

被引:1
|
作者
Wang, Yuhan [1 ]
Xie, Zhi [1 ]
机构
[1] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110819, Peoples R China
关键词
equiaxed crystal ratio; solidification model; fitted parameters; parameter estimation model; least squares; NUMERICAL-SIMULATION; DENDRITIC GROWTH; STAINLESS-STEEL; ALLOY; TRANSITION; COLUMNAR;
D O I
10.3390/cryst13121673
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
This study proposes an automated method for estimating the uncertain parameters of the solidification model in response to the inefficient and time-consuming problem of manually estimating multiple uncertain parameters of the solidification model. The method establishes an uncertain parameter estimation model based on the relationship between the simulated images equiaxed crystal ratio and the uncertain parameters of the solidification model, fits the parameters of the model by the least squares method, and finally estimates the uncertain parameters in the solidification model using the parameters of the fitted model. In comparison with the traditional method of calculating uncertain parameters manually through empirical formulas, this method reduces the difficulty of tuning parameters and solves the problem of tuning multiple parameters simultaneously in the nonlinear solidification model. The experimental results show that the proposed method can accurately estimate the uncertain parameters of the solidification model, improve the efficiency and accuracy of the solidification model estimation parameters, and play a guiding role in simulating the solidification process of continuously casting billet to control the solidification structure.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A least squares twin support vector machine method with uncertain data
    Xiao, Yanshan
    Liu, Jinneng
    Wen, Kairun
    Liu, Bo
    Zhao, Liang
    Kong, Xiangjun
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10668 - 10684
  • [22] A least squares twin support vector machine method with uncertain data
    Yanshan Xiao
    Jinneng Liu
    Kairun Wen
    Bo Liu
    Liang Zhao
    Xiangjun Kong
    Applied Intelligence, 2023, 53 : 10668 - 10684
  • [23] Multiple solutions, illegal parameter values, local minima of the sum of squares, and anomalous parameter estimates in least-squares fitting of the two-compartment pharmacokinetic model with absorption
    Purves, RD
    JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1996, 24 (01): : 79 - 101
  • [24] Least squares estimation in the monotone single index model
    Balabdaoui, Fadoua
    Durot, Cecile
    Jankowski, Hanna
    BERNOULLI, 2019, 25 (4B) : 3276 - 3310
  • [25] Least squares based iterative parameter estimation algorithm for state space model with time-delay
    Gu Ya
    Chou Yongxin
    Ding Wei
    Liu Jicheng
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1603 - 1607
  • [26] Comparison of Total Least Squares and Least Squares for Four- and Seven-parameter Model Coordinate Transformation
    Wu, You
    Liu, Jun
    Ge, Hui Yong
    JOURNAL OF APPLIED GEODESY, 2016, 10 (04) : 259 - 266
  • [27] LEAST-SQUARES FITTING OF CIRCLES AND ELLIPSES
    GANDER, W
    GOLUB, GH
    STREBEL, R
    BIT, 1994, 34 (04): : 558 - 578
  • [28] A FOCUSED REGIONS IDENTIFICATION METHOD FOR NONLINEAR LEAST SQUARES CURVE FITTING PROBLEMS
    Zhang, Guanglu
    Allaire, Douglas
    Cagan, Jonathan
    PROCEEDINGS OF ASME 2022 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2022, VOL 2, 2022,
  • [29] Hyper least squares fitting of circles and ellipses
    Kanatani, Kenichi
    Rangarajan, Prasanna
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (06) : 2197 - 2208
  • [30] A Robust Moving Total Least-Squares Fitting Method for Measurement Data
    Gu, Tianqi
    Tu, Yi
    Tang, Dawei
    Luo, Tianzhi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (10) : 7566 - 7573