Unmanned aerial vehicle service network design for urban monitoring

被引:4
|
作者
Zhou, Bolong [1 ]
Liu, Wei [2 ]
Yang, Hai [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Aeronaut & Aviat Engn, Hong Kong, Peoples R China
关键词
UAV; Urban monitoring; Routing; Location; ALNS; DELIVERY PROBLEM; ROUTING PROBLEM; DRONES; PICKUP; OPTIMIZATION; ACCURATE; MODELS; UAVS;
D O I
10.1016/j.trc.2023.104406
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
This study examines the multi-depot location-routing problems of unmanned aerial vehicles (UAVs) for urban monitoring (MDLRP-UM). MDLRP-UM arises in various practical applications, including daily police patrols in urban residential areas, forest fire patrols, urban infrastructure status monitoring and data collection, traffic flow monitoring at important intersections, and monitoring of urban temperature and humidity, among others. These diverse applications can be modeled as a general mixed-integer quadratically constrained problem (MIQCP), where we jointly plan the service routes of the UAVs, the frequency on each route, and the location of the depots to minimize the total cost. To solve the proposed problem, we decompose it into a master problem and sub-problems. We then propose an iterative algorithm (termed as "Frequency Time-Frequency Strategy") to solve the sub-problems, which is to find the optimal frequency and corresponding single service time for a given single route. The "Frequency-Time-Frequency Strategy" is further nested within a tailored adaptive large neighborhood search (ALNS) based heuristic algorithm to solve the master problem. The efficiency and effectiveness of the proposed solution method are demonstrated by a series of numerical studies.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Unmanned aerial vehicle based measurement of urban forests
    Isibue, Earle W.
    Pingel, Thomas J.
    URBAN FORESTRY & URBAN GREENING, 2020, 48
  • [22] Unmanned aerial vehicle scheduling problem for traffic monitoring
    Li, Miao
    Zhen, Lu
    Wang, Shuaian
    Lv, Wenya
    Qu, Xiaobo
    COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 122 : 15 - 23
  • [23] DISASTER MONITORING AND MANAGEMENT BY THE UNMANNED AERIAL VEHICLE TECHNOLOGY
    Chou, Tien-Yin
    Yeh, Mei-Ling
    Chen, Ying-Chih
    Chen, Yen-Hung
    100 YEARS ISPRS ADVANCING REMOTE SENSING SCIENCE, PT 2, 2010, 38 : 137 - 142
  • [24] Unmanned Aerial Vehicle Application for air Pollution Monitoring
    Szymocha, Slawomir
    Piwowarski, Dawid
    Anweiler, Stanislaw
    MECHATRONICS SYSTEMS AND MATERIALS 2018, 2018, 2029
  • [25] Study on Application of Unmanned Aerial Vehicle for Disaster Monitoring
    Chen Cheng
    Tan YueJin
    Xing LiNing
    RESEARCH JOURNAL OF CHEMISTRY AND ENVIRONMENT, 2012, 16 : 51 - 55
  • [26] Experiment of meteorological disaster monitoring on unmanned aerial vehicle
    Ma, Ruisheng
    Li, Xiaozheng
    Sun, Ming
    Kuang, Zhaomin
    2018 7TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2018, : 241 - 246
  • [27] A vehicle routing problem arising in unmanned aerial monitoring
    Zhen, Lu
    Li, Miao
    Laporte, Gilbert
    Wang, Wencheng
    COMPUTERS & OPERATIONS RESEARCH, 2019, 105 : 1 - 11
  • [28] The use of unmanned aerial vehicle imagery in intertidal monitoring
    Konar, Brenda
    Iken, Katrin
    DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2018, 147 : 79 - 86
  • [29] Traffic Monitoring from the Perspective of an Unmanned Aerial Vehicle
    Kainz, Ondrej
    Dopiriak, Matus
    Michalko, Miroslav
    Jakab, Frantisek
    Novakova, Ivana
    APPLIED SCIENCES-BASEL, 2022, 12 (16):
  • [30] Mission Design and Validation of a Fixed-Wing Unmanned Aerial Vehicle for Environmental Monitoring
    Rufino, Giancarlo
    Conte, Claudia
    Basso, Pasquale
    Tirri, Anna Elena
    Donato, Vincenzo
    DRONES, 2024, 8 (11)