SLSL-QPSO: Quantum-behaved particle swarm optimization with short-lived swarm layers

被引:2
作者
Liang, Kang [1 ]
Zhang, Xiukai [2 ]
Krakhmalev, Oleg [3 ]
机构
[1] Shanghai Polytech Univ, Engn Training & Innovat Educ Ctr, Shanghai 201209, Peoples R China
[2] Shanghai Polytech Univ, Sch Comp & Informat Engn, Shanghai 201209, Peoples R China
[3] Financial Univ Govt Russian Federat, Dept Data Anal & Machine Learning, 4th Veshnyakovsky Passage 4, Moscow 109456, Russia
关键词
Optimization; Particle swarm optimization; Quantum-behaved particle swarm optimization; DESIGN; ALGORITHM;
D O I
10.1016/j.softx.2023.101536
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
SLSL-QPSO is a software that can find the optimal value of a function. It improves over the Quantum-behaved Particle Swarm Optimization (QPSO) algorithms by leveraging the concept of living and death as swarm layers like the parameter optimization in the Optimized PSO (OPSO) but without the super swarm, the Le ' vy mutation, the scoped contradiction-expansion coefficient, and the selection of effective layers. Experimental results demonstrate that SLSL-QPSO has superior performance in finding better optimal than QPSO and several other variants thus providing a competitive solution to optimization problems.
引用
收藏
页数:7
相关论文
共 25 条
[1]   Optimal power flow using particle swarm optimization [J].
Abido, MA .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2002, 24 (07) :563-571
[2]  
Alireza Alfi, 2011, Acta Automatica Sinica, V37, P541, DOI 10.3724/SP.J.1004.2011.00541
[3]   Logistic map as a random number generator [J].
Andrecut, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1998, 12 (09) :921-930
[4]   Review on applications of particle swarm optimization in solar energy systems [J].
Elsheikh, A. H. ;
Abd Elaziz, M. .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2019, 16 (02) :1159-1170
[5]   Phase Angle-Encoded and Quantum-Behaved Particle Swarm Optimization Applied to Three-Dimensional Route Planning for UAV [J].
Fu, Yangguang ;
Ding, Mingyue ;
Zhou, Chengping .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2012, 42 (02) :511-526
[6]  
Kala T. Sree, 2019, 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), P184, DOI 10.1109/COMITCon.2019.8862237
[7]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[8]  
Kulkarni R. V., 2011, IEEE T SYST MAN CY C, V41, P262, DOI DOI 10.1109/TSMCC.2010.2054080
[9]   Parameter Estimation of Software Reliability Model and Prediction Based on Hybrid Wolf Pack Algorithm and Particle Swarm Optimization [J].
Li Zhen ;
Yang Liu ;
Wang Dongsheng ;
Zheng Wei .
IEEE ACCESS, 2020, 8 :29354-29369
[10]  
Liang J., 2019, Problem definitions and evaluation criteria for the cec 2020 special session on multimodal multiobjective optimization, DOI [10.13140/RG.2.2.31746.02247, DOI 10.13140/RG.2.2.31746.02247]