A Novel Method for Land Vehicle Positioning: Invariant Kalman Filters and Deep-Learning-Based Radar Speed Estimation

被引:12
作者
de Araujo, Paulo Ricardo Marques [1 ]
Elhabiby, Mohamed [2 ]
Givigi, Sidney [3 ]
Noureldin, Aboelmagd [1 ]
机构
[1] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 2N8, Canada
[2] Micro Engn Tech Inc, Calgary, AB T2M 0L7, Canada
[3] Queens Univ, Sch Comp, Kingston, ON K7L 2N8, Canada
来源
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES | 2023年 / 8卷 / 09期
基金
加拿大自然科学与工程研究理事会;
关键词
Autonomous vehicles; deep learning; invariant extended Kalman filter; inertial navigation; INERTIAL ODOMETRY;
D O I
10.1109/TIV.2023.3287790
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autonomous and intelligent vehicles are multi-sensor systems operating in various environments and conditions. Due to their characteristics, inertial measurement units (IMUs) are typically the core component of such systems. However, these sensors rapidly accumulate errors due to biases and noise, degrading the positioning solution. Therefore, this article presents a positioning solution that only uses three gyroscopes and one radar. The proposed method was tested using low-cost sensors in different scenarios, such as open-sky, urban and indoor areas. The key components of the method are the invariant Kalman filters and the use of deep neural networks to estimate the forward speed of the car using the radar readings. The method was tested on a custom dataset, and our integrated solution accurately estimates the vehicle's position, velocity, and orientation. We achieved, on average, a $1.45\%$ translational error in the tested scenarios, making the proposed method a robust alternative to current IMU-based positioning methods.
引用
收藏
页码:4275 / 4286
页数:12
相关论文
共 41 条
[11]  
Chen H, 2022, P AMER CONTR CONF, P1236, DOI 10.23919/ACC53348.2022.9867417
[12]   Indoor navigation: state of the art and future trends [J].
El-Sheimy, Naser ;
Li, You .
SATELLITE NAVIGATION, 2021, 2 (01)
[13]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[14]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[15]  
Gondara L, 2016, INT CONF DAT MIN WOR, P241, DOI [10.1109/ICDMW.2016.0041, 10.1109/ICDMW.2016.102]
[16]   Contact-aided invariant extended Kalman filtering for robot state estimation [J].
Hartley, Ross ;
Ghaffari, Maani ;
Eustice, Ryan M. ;
Grizzle, Jessy W. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (04) :402-430
[17]  
Hendrycks D, 2020, Arxiv, DOI arXiv:1606.08415
[18]   Consistent EKF-Based Visual-Inertial Odometry on Matrix Lie Group [J].
Heo, Sejong ;
Park, Chan Gook .
IEEE SENSORS JOURNAL, 2018, 18 (09) :3780-3788
[19]  
Huang GQ, 2019, IEEE INT CONF ROBOT, P9572, DOI [10.1109/icra.2019.8793604, 10.1109/ICRA.2019.8793604]
[20]   High Definition 3D Map Creation Using GNSS/IMU/LiDAR Sensor Integration to Support Autonomous Vehicle Navigation [J].
Ilci, Veli ;
Toth, Charles .
SENSORS, 2020, 20 (03)