A Novel Method for Land Vehicle Positioning: Invariant Kalman Filters and Deep-Learning-Based Radar Speed Estimation

被引:12
作者
de Araujo, Paulo Ricardo Marques [1 ]
Elhabiby, Mohamed [2 ]
Givigi, Sidney [3 ]
Noureldin, Aboelmagd [1 ]
机构
[1] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 2N8, Canada
[2] Micro Engn Tech Inc, Calgary, AB T2M 0L7, Canada
[3] Queens Univ, Sch Comp, Kingston, ON K7L 2N8, Canada
来源
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES | 2023年 / 8卷 / 09期
基金
加拿大自然科学与工程研究理事会;
关键词
Autonomous vehicles; deep learning; invariant extended Kalman filter; inertial navigation; INERTIAL ODOMETRY;
D O I
10.1109/TIV.2023.3287790
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autonomous and intelligent vehicles are multi-sensor systems operating in various environments and conditions. Due to their characteristics, inertial measurement units (IMUs) are typically the core component of such systems. However, these sensors rapidly accumulate errors due to biases and noise, degrading the positioning solution. Therefore, this article presents a positioning solution that only uses three gyroscopes and one radar. The proposed method was tested using low-cost sensors in different scenarios, such as open-sky, urban and indoor areas. The key components of the method are the invariant Kalman filters and the use of deep neural networks to estimate the forward speed of the car using the radar readings. The method was tested on a custom dataset, and our integrated solution accurately estimates the vehicle's position, velocity, and orientation. We achieved, on average, a $1.45\%$ translational error in the tested scenarios, making the proposed method a robust alternative to current IMU-based positioning methods.
引用
收藏
页码:4275 / 4286
页数:12
相关论文
共 41 条
[1]   Improving the RISS/GNSS Land-Vehicles Integrated Navigation System Using Magnetic Azimuth Updates [J].
Abosekeen, Ashraf ;
Noureldin, Aboelmagd ;
Korenberg, Michael J. .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (03) :1250-1263
[2]   LiDAR/RISS/GNSS Dynamic Integration for Land Vehicle Robust Positioning in Challenging GNSS Environments [J].
Aboutaleb, Ahmed ;
El-Wakeel, Amr S. ;
Elghamrawy, Haidy ;
Noureldin, Aboelmagd .
REMOTE SENSING, 2020, 12 (14)
[3]  
Bank Dor, 2020, Autoencoders
[4]   Invariant Kalman Filtering [J].
Barrau, Axel ;
Bonnabel, Silvere .
ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 1, 2018, 1 :237-257
[5]   The Invariant Extended Kalman Filter as a Stable Observer [J].
Barrau, Axel ;
Bonnabel, Silvere .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (04) :1797-1812
[6]   AI-IMU Dead-Reckoning [J].
Brossard, Martin ;
Barrau, Axel ;
Bonnabel, Silvere .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2020, 5 (04) :585-595
[7]   Denoising IMU Gyroscopes With Deep Learning for Open-Loop Attitude Estimation [J].
Brossard, Martin ;
Bonnabel, Silvere ;
Barrau, Axel .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03) :4796-4803
[8]  
Brossard M, 2018, 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), P2021, DOI 10.23919/ICIF.2018.8455807
[9]   A Pipeline Leak Classification and Location Estimation System With Convolutional Neural Networks [J].
Cai, Yaojie ;
Santos, Rejane Barbosa ;
Givigi, Sidney N. ;
Fileti, Ana Maria Frattini .
IEEE SYSTEMS JOURNAL, 2020, 14 (03) :3072-3081
[10]   A Survey on Map-Based Localization Techniques for Autonomous Vehicles [J].
Chalvatzaras, Athanasios ;
Pratikakis, Ioannis ;
Amanatiadis, Angelos A. .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (02) :1574-1596