Adaptive Deep Clustering Network for Retinal Blood Vessel and Foveal Avascular Zone Segmentation

被引:2
作者
Khan, Azaz [1 ,2 ,3 ]
Hao, Jinyi [1 ,2 ,3 ]
Dong, Zihao [1 ,2 ,3 ]
Li, Jinping [1 ,2 ,3 ]
机构
[1] Univ Jinan, Sch Informat Sci & Engn, Jinan 250022, Peoples R China
[2] Univ Jinan, Shandong Prov Key Lab Network Based Intelligent Co, Jinan 250022, Peoples R China
[3] Shandong Coll & Univ, Key Lab Informat Proc & Cognit Comp Five Year 13, Jinan 250022, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 20期
关键词
OCTA; RV; FAZ; segmentation; K-means; FUNDUS IMAGE; OCT-ANGIOGRAPHY;
D O I
10.3390/app132011259
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Optical coherence tomography angiography (OCTA) is a new non-invasive imaging technology that provides detailed visual information on retinal biomarkers, such as the retinal vessel (RV) and the foveal avascular zone (FAZ). Ophthalmologists use these biomarkers to detect various retinal diseases, including diabetic retinopathy (DR) and hypertensive retinopathy (HR). However, only limited study is available on the parallel segmentation of RV and FAZ, due to multi-scale vessel complexity, inhomogeneous image quality, and non-perfusion, leading to erroneous segmentation. In this paper, we proposed a new adaptive segmented deep clustering (ASDC) approach that reduces features and boosts clustering performance by combining a deep encoder-decoder network with K-means clustering. This approach involves segmenting the image into RV and FAZ parts using separate encoder-decoder models and then employing K-means clustering on each part separated by the encoder-decoder models to obtain the final refined segmentation. To deal with the inefficiency of the encoder-decoder network during the down-sampling phase, we used separate encoding and decoding for each task instead of combining them into a single task. In summary, our method can segment RV and FAZ in parallel by reducing computational complexity, obtaining more accurate interpretable results, and providing an adaptive approach for a wide range of OCTA biomarkers. Our approach achieved 96% accuracy and can adapt to other biomarkers, unlike current segmentation methods that rely on complex networks for a single biomarker.
引用
收藏
页数:19
相关论文
共 43 条
[1]   Digital Ocular Fundus Imaging: A Review [J].
Bernardes, Rui ;
Serranho, Pedro ;
Lobo, Conceicao .
OPHTHALMOLOGICA, 2011, 226 (04) :161-181
[2]  
Breger A., 2022, P MED IM 2022 COMP A, VVolume 12033, P520
[3]   Systematic Evaluation of Optical Coherence Tomography Angiography in Retinal Vein Occlusion [J].
Cardoso, Joao Nobre ;
Keane, Pearse A. ;
Sim, Dawn A. ;
Bradley, Patrick ;
Agrawal, Rupesh ;
Addison, Peter K. ;
Egan, Catherine ;
Tufail, Adnan .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2016, 163 :93-107
[4]   Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications [J].
Carneiro, Tiago ;
Medeiros Da Nobrega, Raul Victor ;
Nepomuceno, Thiago ;
Bian, Gui-Bin ;
De Albuquerque, Victor Hugo C. ;
Reboucas Filho, Pedro Pedrosa .
IEEE ACCESS, 2018, 6 :61677-61685
[5]   Quality improvement of OCT angiograms with elliptical directional filtering [J].
Chlebiej, Michal ;
Gorczynska, Iwona ;
Rutkowski, Andrzej ;
Kluczewski, Jakub ;
Grzona, Tomasz ;
Pijewska, Ewelina ;
Sikorski, Bartosz L. ;
Szkulmowska, Anna ;
Szkulmowski, Maciej .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (02) :1013-1031
[6]   A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images [J].
Christodoulidis, Argyrios ;
Hurtut, Thomas ;
Ben Tahar, Houssem ;
Cheriet, Farida .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2016, 52 :28-43
[7]   Automatic segmentation of the foveal avascular zone in ophthalmological OCT-A images [J].
Diaz, Macarena ;
Novo, Jorge ;
Cutrin, Paula ;
Gomez-Ulla, Francisco ;
Penedo, Manuel G. ;
Ortega, Marcos .
PLOS ONE, 2019, 14 (02)
[8]  
Dumoulin V, 2018, Arxiv, DOI [arXiv:1603.07285, 10.48550/arXiv.1603.07285]
[9]   Automatic blood vessels segmentation based on different retinal maps from OCTA scans [J].
Eladawi, Nabila ;
Elmogy, Mohammed ;
Helmy, Omar ;
Aboelfetouh, Ahmed ;
Riad, Alaa ;
Sandhu, Harpal ;
Schaal, Shlomit ;
El-Baz, Ayman .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 :150-161
[10]   An encoder-decoder model based on deep learning for state of health estimation of lithium-ion battery [J].
Gong, Qingrui ;
Wang, Ping ;
Cheng, Ze .
JOURNAL OF ENERGY STORAGE, 2022, 46